
W

W 8
P

FREE

updated

ED I T I ON

Don’t Panic
MOBILE DEVELOPER’S
GUIDE TO THE GALAXY

2

Enough Software GmbH + Co. KG
Sögestrasse 70
28195 Bremen

Germany
www.enough.de

Please send your feedback,
questions or sponsorship requests to:

developers@enough.de
Follow us on Twitter: @enoughsoftware

Services and Tools for All Mobile Platforms

published by:

11th Edition October 2012
This Developer Guide is licensed under the

Creative Commons Some Rights Reserved License.

Art Direction and Design by
Andrej Balaz

(Enough Software)

I Prologue

1 An Introduction To Mobile Development
1 Form Factors and Usage Patterns
2 Mobile Service Options
5 Lost in the Jungle

7 Android
9 Prerequisites
10 Implementation
12 Testing
14 Distribution

16 bada
17 Getting Started
17 Implementation
21 Resources
21 Testing
22 Distribution

Mobile Developer’s Guide
Contents

24 BlackBerry Java Apps
25 Prerequisites
26 Java SDK
26 IDE
26 Desktop Manager
27 Coding Your Application
28 Services
29 Testing
29 Porting
30 Signing
30 Distribution

32 BlackBerry 10
32 The Alpha Device
33 Development
39 Testing
40 Signing
40 Distribution

42 iOS
43 Prerequisites
45 Implementation
46 Testing
48 Distribution
49 Books
51 Community

53 Java ME (J2ME)
54 Prerequisites
55 Implementation
58 Testing
59 Porting
61 Signing
62 Distribution

65 Qt
66 Prerequisites
67 Creating Your Application
69 Testing
69 Packaging
70 Signing
71 Distribution

73 Windows Phone
73 UI Design
74 Development
77 Functions And Services
77 Multitasking And Application Lifecycle
78 Native Code
78 Distribution
79 Testing And Analytics
80 Monetization
80 Resources
81 Windows Phone 8

84 Windows 8
84 The Artist Formerly Known As Metro
84 Prerequisites
85 Developing Metro Style Apps
90 Distribution
91 Resources

93 Going Cross-Platform
94 App Development Process
94 Limitations And Challenges Of Cross Platform Approaches
99 Cross-Platform Strategies
103 Cross-Platform App Frameworks
108 Cross-Platform Game Engines

111 Web Technologies
112 Usability
113 Performance
113 HTML5
114 WebApps
115 Adaptation
118 Technical Limits of Web Technologies
119 HTML without Browsers
122 Test & Debugging
123 Summary

125 Accessibility
127 Developing Accessible Android Apps
128 Developing Accessible BlackBerry Apps
128 Developing Accessible iOS Apps
129 Developing Accessible Symbian / Qt Apps
129 Developing Accessible Windows Phone & Windows 8 Apps
130 Developing Accessible Mobile Web Apps

133 Enterprise Apps
135 Mobile Device Management In The Enterprise
136 Mobile Enterprise Application Platforms

138 Implementing Rich Media
139 Streaming vs. Local Storage
140 Progressive Download
141 Media Converters

143 Implementing Location-Based Services
143 How To Obtain Positioning Data
145 How To Obtain Mapping Services
146 Implementing Location Support On Different Platforms
149 Tools For LBS Apps

151 Implementing Near Field Communication (NFC)
153 Support For NFC
153 Creating NFC Apps

155 Implementing Haptic Vibration
155 The iOS platform
155 The Android Platform
157 The bada Platform
158 BlackBerry Platform
158 Windows 7 Platform
158 Haptic Vibration Design Considerations

161 Security
162 General Concepts
163 The Threats to Your Applications
164 Hiding the Map of Your Code
166 Hiding Control-Flow
167 Protecting Network Communications
167 Active Protection That Stays With The Application
168 White-Box Cryptography
168 Best Practices
169 Protection Tools
169 Resources
171 The Bottom Line

173 Testing
173 Testing Through The Five Phases of an App’s Lifecycle
175 Interactive Testing
179 GUI Test Automation
179 Headless Client
180 Beware Of Specifics
181 Testability: The Biggest Single Win
181 Test-Driven Development
182 Web-Based Content And Applications

184 Monetization
184 Pay Per Download
187 In-App Payment
188 Mobile Advertising
189 Revenue Sharing
190 Indirect Sales
190 Component Marketplace
192 Marketing And Promotion
193 Strategy
194 What Can You Earn?
194 Learn More

196 Appstores
196 Top 5 Appstores
197 Basic Strategies To Get High
199 Multi-Store vs Single Store

202 Now What – Which Environment Should I Use?
202 The Business Perspective: Market Reach
205 The Developer’s Perspective: Technology
207 The Developer’s Perspective: Marketing
210 The Developer’s Perspective: The Final Choice

212 Epilogue

213 About the Authors

IProloguePrologue

Prologue
Welcome to the 11th edition of the Mobile Developers Guide To
The Galaxy. Since our first edition in 2009 we have continued to
cover various mobile technologies and to react to the ongoing
changes in our industry; an industry where the smartphone adop-
tion outpaces PC adoption in the 80s by around tenfold, if we
want to believe Flurry Analytics. And we have seen some more
big changes since our last edition in February 2012:

Android became the most dominant smartphone OS and
proved that its UI can be buttery smooth. The eerie-yet-cool
Google Now service impressed many and a major content
offensive makes Android more compelling, at least in the USA.
The first appstores that offered hacked apps were closed down
by the FBI. Malware keep troubling Android, even though Google
introduced several security mechanisms.

iOS introduced its sixth incarnation of its operating system.
And while iPhones cannot keep up in device numbers with
Android handsets, they frequently outnumber Android in earnings
for developers even though that gap seems to be closing some-
what now. The tablet market remains in the firm grip of the iPad.
New iOS 6 features include turn-by-turn navigation, 3D maps and
deep Facebook integration. And iOS has shown us the dark side
of a cloud-enabled world when writer Mat Honan's iPhone, iPad
and Mac were remotely wiped using iCloud.

While the iPhone 5 brought LTE support to Apple’s handsets,
Microsoft surprised us with its own Windows 8 powered Surface
tablets and is now ready to launch Windows 8 and Windows
Phone 8. When Xbox 8 (or however they will call it) comes out,
Microsoft's 3-screen-vision will become an interesting reality. So
far people seem reluctant to change, but it hasn't been the first

IIPrologue

time that people first need to use a system for a while before
they learn to love it.

Research In Motion got a new CEO and concentrates on
BlackBerry OS 10. Perhaps they will emerge like a Phoenix - er,
or like Apple did with their OS X - with that all new approach?
Otherwise OS 7.1 has been released but its relative market share
keeps plummeting.

While you can still create AIR based Flash apps, Flash on
mobile is pretty much dead in the water - and so we removed
the corresponding chapter. Samsung's bada OS has received
little love in 2012; and while Tizen has released a 1.0 SDK
devices have been pushed back to 2013. Firefox OS seems to be
getting more traction with first devices also expected in 2013.
Nokia released its 808 PureView device, but otherwise things got
quieter around Symbian - and Nokia even sold the Qt technology
to Digia. Nokia focuses on Windows Phone 8 and Series 40 now.

Stupid patent wars keep on stifling the innovation. All
the big players seem to be in a constant war with each other
instead of focusing on their customers' needs. Point in case
is the the record penalty of 1 billion US dollar for Samsung's
alleged copying of the iPhone design.

On a more positive note, we have some editorial changes:
Next to the Flash chapter we have also removed the Symbian
one, as new mobile developers are unlikely to likely start with
native Symbian development anymore. Last but not least we
have new chapters dealing with BlackBerry 10 and Enterprise
Apps.

We hope you enjoy this guide. Please get involved and let
us know what content might be missing, or if you would like to
contribute, at developers@enough.de!

Robert + Marco / Enough Software
Bremen, September 2012

IIIPrologue

MDGG

1An Introduction To Mobile Development

An Introduction To
Mobile Development
Welcome to the world of mobile development, a world where
former giants stumble and new stars are born on a seemingly
regular basis.

Form Factors and Usage Patterns

You have to differentiate between smart phones, tablets and
feature phones. Each form factor poses its own usability chal-
lenges; a tablet demands a different navigation than a phone.
TV systems are getting more traction as another form factor for
mobile developers.

Android usage patterns differ from iOS ones, which differ
from Windows Phone apps, et cetera.

You should, therefore, refrain from bringing the very same
experience on all form factors or even all your target smart-
phone systems. Otherwise you risk delivering a mediocre service
to various sections of your target user base.

2An Introduction To Mobile Development

Mobile Service Options

There are several ways how you can realize a mobile service:

 — App
 — Website
 — SMS, USSD1 and STK2

App
An app runs directly on the device. It can be developed
natively, with cross-platform tools, or as an HTML5/web app.
Apps are typically distributed through the app stores. Pure web
apps can be installed directly, an option that may be necessary
depending on the nature of the app and the rules of the app
store in question. A hyped controversy circles around whether
native or web apps are the future. Famous examples include the
Financial Times app which left the app store in order to keep all
subscriber revenue to themselves for the web world; conversely
the Facebook iOS app which was recently revamped as a native
app in order to dramatically improve the performance and
usability. For most mobile app developers this controversy does
not really exist, as an hybrid approach to app development is
quite common. An app can use native code for best perfor-
mance and to integrate the app with the platform; and use a
webview together with HTML5 based content for other parts of
the same app.

There are many different operating systems to choose from:

1 en.wikipedia.org/wiki/USSD
2 en.wikipedia.org/wiki/SIM_Application_Toolkit

http://en.wikipedia.org/wiki/USSD
http://en.wikipedia.org/wiki/SIM_Application_Toolkit

3An Introduction To Mobile Development 3

Platform Language(s) Form factor URL

Aliyun Java, C, C++ Smartphone developer.aliyun.com

Android Java, C, C++ Smartphone,
Tablet, TV

developer.android.com

bada C, C++ Smartphone developer.bada.com

BlackBerry Java, Web
Apps

Smartphone developer.blackberry.
com

BlackBerry
Playbook OS
(QNX)

ActionScript,
C++, HTML

Tablet developer.blackberry.
com

Brew MP C Featurephone brewmp.com

iOS Objective-
C, C

Smartphone,
Tablet

developer.apple.com/
devcenter/ios

Nokia OS Java ME Featurephone developer.nokia.com/
Develop/Series_40

Symbian C, C++, Java,
Qt, Web
Apps, others

Smartphone forum.nokia.com/
symbian

Windows 8 C#/VB.NET,
C++,
JavaScript

Tablet, PC dev.windows.com

Windows
Phone

C#, VB.NET,
C++

Smartphone dev.windowsphone.com

http://developer.aliyun.com
http://developer.android.com
http://developer.bada.com
http://developer.blackberry.com
http://developer.blackberry.com
http://developer.blackberry.com
http://developer.blackberry.com
http://brewmp.com
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.nokia.com/Develop/Series_40
http://developer.nokia.com/Develop/Series_40
http://forum.nokia.com/symbian
http://forum.nokia.com/symbian
http://dev.windows.com
http://dev.windowsphone.com

4PrologueAn Introduction To Mobile Development

Additional mobile operating systems include:

Platform Language(s) Form factor URL

BlackBerry
10

C, C++, HTML,
AIR

Smartphone,
Tablet

developer.blackberry.com

Firefox OS HTML Smartphone mozilla.org/en-US/b2g

Mer HTML, C/Qt Smartphone merproject.org

Tizen HTML Smartphone tizen.org

Website
A website runs for the most part on your server but you can
access various phone features on the device with JavaScript,
e.g. to store data locally or to request the current location of
the device.

SMS, USSD and STK
Simple services can be realized with SMS, USSD or STK. Every-
one knows how SMS (Short Message Service) text messaging
works and every phone supports SMS, but you need to convince
your users to remember textual commands for more complex
services. Some operators offer APIs for messaging services
that work for WiFi-only devices, such as the network APIs of
Deutsche Telekom3. USSD (Unstructured Supplementary Service
Data) is a GSM protocol used for pushing simple text based
menus, the range of support depends on the carrier and the
device. STK (SIM Application Toolkit) allows to implement
low-level but interactive apps directly on the SIM card
of a phone.

3 www.developergarden.com/apis

http://developer.blackberry.com
http://mozilla.org/en-US/b2g
http://merproject.org
http://tizen.org
http://www.developergarden.com/apis

5Prologue

Lost in the Jungle

If you are lost in the jungle of mobile development, don’t
worry, stay calm and keep on reading. Go through the options
and take the problem that you want to solve, your target
audience and your know-how into account. Put a lot of effort
into designing the experience of your service, concentrate on
the problem at hand and keep it simple. It is better to do less
well than doing everything only so-so. Invest in the design and
usability of your solution. Last but not least finding the right
niche is often better than trying to copy something already
successful. This guide helps you to make an informed decision!

FIGHTCLUB
GALACTIC

6Prologue

7Android

Android
The Android platform is developed by the Open Handset
Alliance led by Google and has been publicly available since
November 2007.

Android is an operating system, a collection of preinstalled
applications and an application framework (Dalvik) supported
by a comprehensive set of tools. Its use by many hardware
manufacturers has made it the fastest growing smartphone
operating system. According to Gartner1, more than 64% of
all smartphones sold in Q2 2012 worldwide were based on
Android, and more than 600,000 apps are available in the
Android Market2. In September 2012 Google announced that
there are a half billion Android devices activated and that this
number grows by 1.3 million per day3. Android is also used in
tablets, media players, set-top boxes, desktop phones and car
entertainment systems. Some non-Android devices are also able
to run Android applications with reduced functionality, such as
RIM’s Playbook with its virtual machine called App player4.

The platform continues to evolve rapidly, with the regular
addition of new features every 6 months or so. At the last
Google I/O in June 2012 Google announced the newest Android
version called “Jelly Bean”. Android 4.1 is intended to improve
the experience created with Android 4.0, known as “Ice Cream
Sandwich”. Therefore a functionality called “Butter” was imple-
mented which basically works as Triple Buffer and results in a
much smoother navigation and a stable frame rate. Furthermore
Google introduced an improved notification system with

1 www.gartner.com
2 www.zdnet.com/blog/burnette/live-from-google-io-2012/2597
3 mashable.com/2012/09/12/500-million-android-devices-activated/
4 www.theregister.co.uk/2011/03/25/rim_playbook_android/

http://www.gartner.com
http://www.zdnet.com/blog/burnette/live-from-google-io-2012/2597
%20http://mashable.com/2012/09/12/500-million-android-devices-activated/
http://www.theregister.co.uk/2011/03/25/rim_playbook_android/

8Android

drop-downs, floating homescreen icons which automatically
get positioned if you move icons towards them and USB-Audio
support. There are many more tiny improvements and additions
which show that Google has succeeded in getting Android to
the state where it is a stable base for the future.

One of the most discussed issues when developing for
Android is fragmentation: The multitude of different devices by
different manufacturers and the fast progress of the platform
itself leads to uncertainty over whether your Android applica-
tion will run everywhere. In addition, only a very small number
of phone and tablet models support the latest OS version.
However, today you will reach 99.3% of the installation base if
you decide to target Android 2.1 or above5. To reduce fragmen-
tation issues caused by large differences in screen size, Android
3.2 (“Honeycomb”) introduced a new resource descriptor
called “smallestWidth” which can be used to target phones and
tablets with different layout depending on their dimensions6.
To push solid user experience and consistent appearance of
Android applications, Google published a design guide for
Android apps available at developer.android.com/design/.

5 developer.android.com/resources/dashboard/platform-versions.html
6 developer.android.com/guide/practices/screens_support.html#NewQualifiers

http://developer.android.com/design/
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/guide/practices/screens_support.html#NewQualifiers

9Android

Prerequisites

The main programming language for Android is Java. But
beware, only a subset of the Java libraries are supported and
there are many platform specific APIs. You can find answers to
your “What and Why” questions in the Dev Guide7 and to your
“How” questions in the reference documentation8. Furthermore
Google introduced a section in their documentation called “An-
droid Training” which targets new developers who want to learn
about best practices9, where developers can learn about basics
like navigation and inter-app communication or more advanced
features like intelligent Bitmap downloads and optimizing for
less battery drainage.

To get started, you need the Android SDK10, which is avail-
able for Windows, Mac OS X and Linux. It contains the tools
needed to build, test, debug and analyze applications. You will
probably also want a good Java IDE. Eclipse or IntelliJ seem
good choices. These IDEs offer good support for development,
deployment and – importantly – library projects that enable the
sharing of code and resources between projects.

Command line tools and Ant build scripts are also provided,
so you can create almost any development and build process.

The Android Developer Tools for Eclipse bring nice features
like Lint11, which helps in improving applications by identifying
common programming mistakes. Thankfully, the improvements
are easy to implement.

7 developer.android.com/guide
8 developer.android.com/reference
9 developer.android.com/training/index.html
10 developer.android.com/sdk
11 tools.android.com/recent/lint

http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/training/index.html
http://developer.android.com/sdk
http://tools.android.com/recent/lint

10Android

Implementation

An Android application is a mix of activities, services, message
receivers and data providers, which are declared in the applica-
tion manifest.

An activity is a piece of functionality with an attached user
interface. A service is used for tasks that run in the background
and, therefore, not tied directly to a visual representation.

A message receiver handles messages broadcast by the
system or other applications. A data provider is an interface to
the content of an application that abstracts from the underly-
ing storage mechanisms. An application may consist of several
of these components, for instance an activity for the UI and a
service for long running tasks.

Communication between the components is done by intents.
An intent bundles data, such as the user’s location or an

URL, with an action. These intents trigger behaviors in the
platform and can be used as messaging system in your applica-
tion.

For instance, the intent of showing a web page will open the
browser activity. The powerful thing about this building-block
philosophy is that functionality can be replaced by another
application, as the Android system always uses the preferred
application for a specific intent.

For example, the intent of sharing a web page triggered by a
news reader app can open an email client or a text messaging
app depending on the user’s preference and the applications
installed: Any application that declares the sharing intent as
their interface can be used.

To aid development, you have many tools at your disposal in
the SDK, the most important ones are:

11Android

 — android: To create a project or manage virtual devices and
versions of the SDK.

 — adb: To query devices, connect and interact with them
(and virtual devices) by moving files, installing apps and
such like.

 — emulator: To emulate the defined features of a virtual
device. It takes a while to start, so do it once and not for
every build.

 — ddms: To look inside your device or emulator, watch log
messages and control emulator features such as network
latency and GPS position. It can also be used to view
memory consumption or kill processes. If this tool is
running, you can also connect the Eclipse debugger to a
process running in the emulator. Beyond that ddms is the
only way (without root-access) to create screenshots in
Android versions below 4.0.

These four tools and many others, including tools to analyze
method trace logs, inspect layouts and test apps with random
events, can be found in the tools directory of the SDK.

The user interface of an application is separated from the
code in Android-specific xml layout files. Different layouts can
be created for different screen sizes, country locales and device
features without touching the Java code. To this end, localized
strings and images are organized in separate resource folders.
Of course you are able to define layouts in code as well.

IDE plug-ins are available to help manage all these files.
Version 11.x of IntelliJ includes a visual layout-editor, so you
are free to choose between Eclipse & IntelliJ in case you want
to do some rapid prototyping by dragging around UI-elements
in the editor.

If you are facing issues, such as exceptions being
thrown, be sure to check the ddms log. It enables you to

Android

check if you omitted to add all necessary permissions like
android.permission.INTERNET in the uses-permission
element12.

If you are going to use Honeycomb, ICS or Jelly Bean related
layout features – such as Fragments13 – for large screens, be
sure to add the Android Compatibility package from Google.
It is available through the SDK & AVD Manager and helps
to develop for Android 3.0+ without causing problems with
deployment to Android 1.614 through to Android 2.3. Be sure
to use the v4 packages in your application to provide maximum
backwards support.

Developing your application against Android 3.1+, you will
be able to make homescreen widgets resizable, and connect via
USB to other devices, such as digital cameras, gamepads and
many others.

Testing

The first step to test an app is to run it on the emulator or a
device. You can then debug it, if necessary, through the ddms
tool.

All versions of the Android OS are built to run on devices
without modification, however some hardware manufacturers
might have changed pieces of the platform15. Therefore, testing
on a physical device is essential.

12 developer.android.com/reference/android/Manifest.permission.html
13 developer.android.com/guide/topics/fundamentals/fragments.html
14 android-developers.blogspot.com/2011/03/fragments-for-all.html
15 For an overview see androidfragmentation.com

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/fundamentals/fragments.html
http://android-developers.blogspot.com/2011/03/fragments-for-all.html
http://www.androidfragmentation.com

13Android

Automated Testing
To automate testing, the Android SDK comes with some capable
and useful testing instrumentation16 tools. Tests can be written
using the standard JUnit format, using the Android mock
objects that are contained in the SDK.

The Instrumentation classes can monitor the UI and send
system events such as key presses. Your tests can then check
the status of your application after these events have occurred.
MonkeyRunner17 is a powerful and extensible test automation
tool for testing the entire application. The test scripts are
written in Python.

The automated tests can be run on virtual and physical de-
vices. Open source testing frameworks, such as Robotium18 can
complement your other automated tests. Robotium can even be
used to test binary apk files, if the source is not available. A
maven plugin19 and a helper for the continuous integration of a
Hudson server may also assist your testing20.

Signing
Your application is always be signed by the build process,
either with a debug or release signature. You can use a self-
signing mechanism, which avoids signing fees (and security).

The same signature must be used for updates to your ap-
plication. Remember that you can use the same key for all your
applications or create a new one for every app.

16 developer.android.com/guide/topics/testing/testing_android.html
17 developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
18 code.google.com/p/robotium
19 code.google.com/p/maven-android-plugin/
20 wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://code.google.com/p/robotium
http://code.google.com/p/maven-android-plugin/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

14Android

Distribution

After you have created the next killer application and tested
it, you should place it in the Android Market. This is a good
place to reach both customers and developers of the Android
platform, to browse for exciting new apps and to sell your own
apps. It is also used by other app portals as a source for app
metadata. To upload your application to the Android Market,
start at market.android.com/publish.

You are required to register with the service using your
Google Checkout Account and pay a $25 registration fee. Once
your registration is approved, you can upload your application,
add screenshots and descriptions and publish it.

Make sure that you have defined a versionName,
versionCode, an icon and a label in your
AndroidManifest.xml. Furthermore, the declared features
in the manifest (uses-feature nodes) are used to filter apps for
different devices. As there are lots of competing applications in
Android Market, you might want to use alternative application
stores. They provide different payment methods and may target
specific consumer groups21. One of those markets is the Amazon
Appstore, which comes preinstalled on the Kindle Fire. For more
information about appstores, please refer to the dedicated
chapter in this guide.

Android 1.6 upwards also supports in-app purchase. This
enables you to sell extra content, feature sets and such like
from within your app, using the existing infrastructure of the
Android Market22.

21 wipconnector.com/index.php/appstores/tag/android
22 developer.android.com/guide/market/billing/index.html

http://market.android.com/publish
http://www.wipconnector.com/index.php/appstores/tag/android
http://developer.android.com/guide/market/billing/index.html

16bada

bada
bada is Samsung’s proprietary smartphone platform and is based
on open-source tools and software. bada was introduced in late
2009 and the first version of the SDK was released to the public
in June 2010. Samsung’s main reason for introducing bada was
to accommodate the anticipated need for smartphone features
at the low-end of the market. Because bada can run on top of
a Linux kernel for high-end devices or a real-time OS kernels for
low-end devices, all market segments can be served.

Samsung provides a documentation at developer.bada.com.
This site offers a forum, premium support and direct access to
Samsung bada experts as well.

Currently there are ten bada-based devices available with
the Wave 3 being the current flagship device and Wave 578, the
first device with NFC hardware running bada 2.0. According to
Gartner, the overall market share of bada among smartphone
sales has been 2.7% in Q2 2012 – exactly the same than
Windows Phone1.

bada 2.0 – released in September 2011 – introduced
multitasking, which makes real background services possible. In
addition, bada 2.0 supports Near Field Communication as well
as the possibility for easy ad-hoc WiFi-P2P network setup from
within the SDK. Other interesting features include enhance-
ments to the UX with speech-to-text (STT) and text-to-speech
(TTS), as well as support for 3D sound with OpenAL. Further-
more, the support for web-based applications is extended, with
more JavaScript frameworks, HTML5 and a lot of APIs from the
WAC 2.0 standard within the Webcontrol. Another interesting
new feature is the MIME-type registration for applications, so

1 gartner.com/it/page.jsp?id=2120015

http://developer.bada.com
http://www.gartner.com/it/page.jsp?id=2120015

17bada

that you can register applications to the system for handling
specific file or media types, such as MP3.

Getting Started

You get start with developing for bada by registering at
developer.bada.com, there is no charge for this. Next, download
the bada SDK, which is available for Microsoft Windows based
computers only. The SDK includes the bada IDE (based on
Eclipse CDT), an emulator and a GNU toolchain.

Before starting to program you should be familiar with the
application manifest, which is a unique application profile. This
profile is needed to enable debugging and testing of applica-
tions on devices and distribution of apps through the store. A
manifest can be generated and managed on
developer.bada.com under the menu item “My Application”.

You can create feature-rich bada apps with the C++ frame-
work for C++/ Flash-based applications or the Web framework
for developing applications based on standard web technolo-
gies, such as HTML, CSS and JavaScript. The bada project
templates, included in the IDE, provide a good starting point
for bada application development for all of these technologies.

Implementation

After creating an application manifest you can start with app
development using the bada SDK/IDE. The IDE has a plentiful
library of example code and this code can be copied with one
click into your own workspace. These examples are a great way
to get familiar with the features of bada and its programming
paradigm.

http://developer.bada.com
http://developer.bada.com

18bada

C++ based applications
Native bada apps are developed in C++. Some restrictions
apply however, for example, the language does not use
exceptions. Instead, it returns values and a combination of
macros is used for error handling and RTTI is turned off, so that
dynamic_cast does not work on bada.

When creating bada apps, you need to understand memory
management basics, because the language often leaves this up
to you. For example, the app will have to delete any pointer
returned by a method ending in ‘N’. You should also make sure
that each new variable has a delete method:

MyType var = new MyType(); // call delete
MyType array = new MyType// call delete[MyType
type, stackarray[];
// variable on stack will be destroyed by scope,
no delete

The API uses some parts of STL, so while Samsung says that
STL can be used in code, be aware that the current STL imple-
mentation shipping with bada is missing some components.
This can be addressed by using STLPort for full STL support.
Similarly you can port modern C++ Libraries, such as Boost, to
work on bada, but the lack of RTTI and exceptions can make it
challenging work.

The bada API itself is wrapped in a number of namespaces.
The API offers UI Control and Container classes, but there are
no UI Layout management classes, so the UI elements must be
positioned by hand or within the code. An UI layout for the
landscape and/or the portrait mode is also your responsibility.
The API provides most standard classes for XML, SQL or Network
and a pretty complete framework. You should make use of the

http://10];

19bada

callbacks for important phone events in the application class,
such as low battery level or incoming calls.

When writing games for bada, the SDK supports OpenGL ES
1.1 and 2.0. The SDK wraps parts of OpenGL for use in its own
classes, making it easy to port existing OpenGL code to bada.

Flash based applications
Flash based applications make use of the
Osp::Ui::Controls::Flash control of the c++ framework:
so a Flash based app is simply a Flash movie played within a
C++ bada app. This means you are able to take advantage of the
entire C++ API feature set, such as geolocations and accelerom-
eter. bada 2.0 is able to handle Adobe Flash Lite Version 4 and
ActionScript 3.0. To create an interface with the Flash app, use
the fscommand2 and SendDataEventToActionScript()
API calls. Following examples from the bada documentation will
show this roundtrip:

fscommand2(“Set”,”SendDataEvent”, “/”);
// Implement this callback method from the
// Osp::Ui::IFlashEventListener Interface to
respond to the ActionScript
// “Set” fscommand2 that we defined for the
PushButton Flash object.
void FlashForm::OnFlashDataReceived
(const Osp::Ui::Control &source, const
Osp::Base::Collection::IList &mList)
{
}

More information on using Flash as application platform can
be found in the bada online help system under the menu entry

20bada

“bada Flash App Programming” (bada help > Flash Application
Programming).

Web based applications
The bada web framework uses HTML, JavaScript and CSS. These
standards are enriched by additional APIs (such as those de-
fined by WAC) and other concepts. The web framework extends
the object-oriented programming concepts of JavaScript with
following paradigm:

 — Class: Adopts object-oriented class concept with its defini-
tion, members and types

 — Inheritance: Adds the inheritance feature of object-
oriented programming by using the extend key to a drive a
new class.

 — Mixins: Mixins provides a way to extend the functionality
of existing classes without using inheritance.

In addition you should be aware of following system limita-
tions:

 — Selected fonts from the Settings menu are not supported
with web applications

 — Only the bada 2.0 theme is supported in web applications
 — Content links for download external content are not

supported and queried sites from a link (a href) will be
loaded into the same document page.

For basic information on mobile web programming, please
see the respective chapter in this guide.

http://developer.bada.com/library/help
http://developer.bada.com/library/help

21bada

Resources

The central resource for bada developers is developer.bada.com.
The biggest independent bada website and forum is currently

BadaDev.com, which has a good library of great tutorials about
coding for bada. There is an IRC channel #bada at irc.freenode.
net, and of course there are groups for bada developers on most
social networks.

Testing

The bada API offers its own logging class and an AppLog
method; you should make extensive use of logging in debug
builds.

The AppLog will show up in the IDE. The IDE provides for
testing and debugging in the simulator or on a device. As
mentioned earlier in this guide, we strongly recommend testing
on devices. Without device testing you cannot be sure how the
app will perform and, in rare cases, code that worked perfectly
on the simulator will not do so on the handset.

Samsung provides the bada Remote Test Lab (RTL), which is
available for all registered developers, and can be installed as
an Eclipse-plugin.

Tools and frameworks for unit testing are available within
the IDE/SDK. For details about these tools, check out the
“bada Tutorial Development Environment.pdf” included in the
documents folder in the SDK base directory.

Another new tool that was introduced with bada 2.0 SDK is a
code coverage and performance-monitoring tool, which enables
code optimizations.

http://developer.bada.com
http://BadaDev.com
http://irc.freenode.net
http://irc.freenode.net

Distribution

There is only one option for distributing bada apps, Samsung‘s
own appstore. Samsung’s application store gives developers
a route to market and includes features such as sales and
download statistics, advertising and a direct feedback channel
for customers. The store is accessible to customers through
a website2, a client application on bada smartphones and a
PC client called Samsung’s Kies. Applications can be offered
as paid apps or free. In the case of a purchased app, you will
receive 70% of sales, which is the same offer as most other
popular mobile application stores.

As with Apple’s AppStore, there are quite strict acceptance
rules for apps submitted. You can find out more in the
“Samsung Apps Publisher Guide,“ which can be downloadable
after registering at the Samsung Apps Seller Office.

 For advertising Samsung own advertising service – AdHub –
but also allows the inclusion of third party ad network contents

.

2 samsungapps.com

http://www.samsungapps.com

24BlackBerry Java Apps

BlackBerry Java Apps
The BlackBerry platform is developed by Canadian company Re-
search In Motion (RIM)1 and was launched in 1999. BlackBerry
devices became extremely popular because they were equipped
with a full keyboard for comfortable text input (which spawned
a condition named BlackBerry Thumb2), offered long battery
life and included BlackBerry Messenger, their mobile social
network offering. Add PDA applications such as address book,
secure email, calendar, tasks and memopad to these features
and you will understand why the platform is very popular
among business and mainstream users alike.

The overall market share of BlackBerry phones has continued
to decline in 20123, but it is still an important smartphone
platform. Furthermore, RIM’s offering in the tablet market – the
PlayBook – has received an important upgrade in the form of
BlackBerry Tablet OS 2.0. The new OS comes with a slew of
compelling features and improvements, such as support for
Android apps, built-in Documents to Go mobile office suite and
improved web browsing.

In this chapter we concentrate on Java development for
BlackBerry smartphones running the current Blackberry OS (up
to version 7.1). RIM’s next-generation OS, Blackberry 10, is
covered in a separate chapter of the guide.

1 rim.com
2 wikipedia.org/wiki/Blackberry_thumb
3 gs.statcounter.com

http://www.rim.com
http://en.wikipedia.org/wiki/Blackberry_thumb
http://gs.statcounter.com

Prerequisites

BlackBerry OS is the operating system found on all current
BlackBerry smartphones. Its latest iteration released in January
2012 (BlackBerry OS 7.1) offers some notable improvements
over its predecessor (BlackBerry OS 7): tethering, WiFi calling
support, NFC Tag support and FM radio.

The most relevant API additions in OS 7.1 are:

 — NFC Peer-to-Peer API, which offers the ability to initiate
data transfers between two devices via NFC, then complete
the transfer via Bluetooth

 — FM Radio API
 — Profiles API, which allows read/write access to the user’s

current profile

For BlackBerry OS, two development approaches are avail-
able depending on the type and nature of your planned project.
For mid-sized to large applications native Java development is
the best choice; while small apps could be developed with the
BlackBerry WebWorks SDK.

Although it will be phased out in the future, currently the
BlackBerry Java API is the most commonly used method to
develop BlackBerry apps. As such, this chapter focuses on Java
development.

26

Java SDK

As for all Java-driven application development, you need the
Java SDK4 (not the Java Runtime Edition).

IDE

For native Java development, you first need to decide which
IDE to use. The modern option is to use Eclipse and the Black-
Berry plugin5, for previous BlackBerry OS versions you can also
use the BlackBerry Java Development Environments (JDEs)6.

These JDEs are complete environments enabling you to
write, compile, package and sign your applications. Device
simulators are included as well.

Desktop Manager

The BlackBerry Desktop Manager7 should be downloaded and
installed.

It enables you to deploy your app package on to a device for
testing. For faster deployment, you might also use a tool called
javaloader that comes with the JDE.

4 oracle.com/technetwork/java
5 us.blackberry.com/developers/javaappdev/javaplugin.jsp
6 developer.blackberry.com/java/download/previousjdeversions/
7 us.blackberry.com/apps-software/desktop/

http://www.oracle.com/technetwork/java
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://https://developer.blackberry.com/java/download/previousjdeversions/
http://us.blackberry.com/apps-software/desktop/

Coding Your Application

The BlackBerry JDE is partly based on Java ME and some of
its JSR extensions: Integrated into the SDK is the MIDP 2.0
standard with popular JSR extensions that provide APIs for UI,
audio, video, and location services among others8. This means
that BlackBerry apps can be created using Java ME technolo-
gies alone.

Another option is to use BlackBerry’s proprietary extensions
and UI framework that enable you to make full use of the
platform.

Native UI components can be styled to an extent, but
they inherit their look from the current theme. This can be
prevented in code, by overriding the Field.applyTheme()
method for each component/field.

From OpenGL-ES to homescreen interaction and cryptogra-
phy, the BlackBerry APIs provide you with everything you need
to create compelling apps. In addition to the official BlackBerry
tools, there are third party extensions that enable you to
enhance your apps, for example J2ME Polish9 or Glaze10 which
enable you to design and animate your UI using CSS.

8 blackberry.com/developers/docs/6.0.0api/index.html
9 j2mepolish.org
10 glaze-ui.org

http://www.blackberry.com/developers/docs/6.0.0api/index.html
http://www.j2mepolish.org
http://www.glaze-ui.org

28BlackBerry Java Apps 28

Services

BlackBerry offers many services that can be useful in develop-
ing your applications including advertising, mapping, payment
and push services11.

The push service is useful mainly in mail, messaging or news
applications. Its main benefit is that the device waits for the
server to push updates to it, instead of the device continuously
polling the server to find out if updates are available and then
pulling the updates from the server. This reduces network
traffic, battery usage and, for users on metered data plans or
roaming, lowers costs.

The push service12 works as follows: Your server sends a data
package of up to 8KB to the BlackBerry push infrastructure. The
infrastructure then broadcasts the message to all or a group of
clients (for content such as a news report) or to one specific
client (for content such as a chat message). The device client
then receives the message through BlackBerry’s Push API and
may confirm message receipt back to the infrastructure. Your
server can then check if the message was delivered. BlackBerry
offers the push mechanism as a limited free service, with a
premium paid extension that enables you to send more push
messages.

11 developer.blackberry.com/services/#platform
12 us.blackberry.com/developers/platform/pushapi.jsp

http://https://developer.blackberry.com/services/#platform
http://us.blackberry.com/developers/platform/pushapi.jsp

29BlackBerry Java Apps

Testing

BlackBerry provides simulators for various handsets in the JDE
and plug-ins or as separate downloads. These simulators enable
you to run an app on a PC in the same way it would be run on
a device. To assist with testing, the simulators include features
such as simulating incoming calls and setting the signal
strength enabling you to check how your application reacts if a
device is outside network coverage. Applications running on the
emulators are fully debuggable with breakpoints.

As a great plus, BlackBerry devices provide the capability
to perform on-device debugging with all the features that you
enjoy from the simulators.

Porting

Porting apps between BlackBerry devices is easy because the OS
is made by a single company that has been careful to minimize
fragmentation issues. However, this does not entirely eliminate
challenges:

 — Some classes and functionality are only available on
specific OS versions. For example the FilePicker that is used
to choose a file is only available from OS 5.0 onwards.

 — You need to handle different screen resolutions and
orientation modes (landscape and portrait).

 — You need to handle touch and non-touch devices. In addi-
tion, the Storm devices use a touchscreen that is physically
clickable, so there is a distinction between a touch and
a click on these devices. BlackBerry’s more recent touch
devices do not use this technology anymore.

30BlackBerry Java Apps

Porting to other Java platforms such as Java ME and Android
is complicated as it is not possible to port the BlackBerry UI.

Code written for server communication or storage might be
reused on Java ME and Android if you avoid native BlackBerry
API calls. In general, cross-platform portability strongly
depends on how frequently your app uses native BlackBerry
components.

For example it is not possible to reuse BlackBerry push
services classes on other platforms.

Signing

Many security-critical classes and features of the platform (such
as networking or file APIs) require an application to be signed
such that the publisher can be identified. To achieve this, you
need to obtain a signing key directly from BlackBerry13. The
signing itself is undertaken using the rapc tool, which also
packages the application.

Distribution

BlackBerry’s own distribution channel is called App World14
where you can publish your apps. For paid applications, you’ll
get a 70% revenue share. In addition, GetJar15 is a well-known
independent website that also publishes BlackBerry apps.

13 blackberry.com/SignedKeys/
14 appworld.blackberry.com
15 getjar.com

http://https://www.blackberry.com/SignedKeys/
http://appworld.blackberry.com
http://www.getjar.com

32BlackBerry 10

BlackBerry 10
The BlackBerry 10 platform (BB10) is a general relaunch from
RIM. It will only be available on next-gen devices - there
are no upgrade plans for current generation devices. RIM has
taken this approach in order to catch-up with competing
mobile operating systems: iOS, Android and Windows Phone
8. Although the OS is entirely new, the other parts of the
BlackBerry ecosystem, like the App World or the push-service,
will not change. Security-wise, BB10 will be built to the same
high standards for which the BlackBerry platform is well known.
One of BB10’s major goals is to harmonize mobile phones and
tablets by having them run the same operating system and the
same apps, something not currently possible in the BlackBerry
ecosystem. BB10 is scheduled to arrive in Q1 2013.

The Alpha Device

RIM offers developers a physical device called Dev Alpha1 in
order to convince developers to adopt the new platform and to
update their existing apps.

Developers can get this device on the Blackberry JAM Tour2,
a series of conferences held all over the world. The DevAlpha is
not a final product, but it does showcase how the new OS will
work and what hardware and software features developers can
expect from the new BB platform. This helps developers write
and test their apps on real hardware as well as on simulators.
The BlackBerry 10 Dev Alpha has a 4.2-inch 1280x768 HD LCD
(356dpi) touch screen, internal storage of 16GB, two cameras,
a Micro HDMI port for video output, Bluetooth and WiFi, a

1 developer.blackberry.com/blackberry10devalpha
2 blackberryjamconference.com

http://https://developer.blackberry.com/blackberry10devalpha/
http://www.blackberryjamconference.com/

33BlackBerry 10

network unit capable of quad band HSPA+ (with no LTE support
as of this writing) and a Micro USB port for debugging and
charging.

Development

With BB10, apps can be developed using a wide variety of
software technologies:

 — C Native SDK
 — C++ Cascades SDK
 — HTML5 (WebWorks SDK)
 — Adobe Air
 — Android Runtime (Android 2.3.3 compatibility layer)

A major point of discontent, for which RIM has received
a lot of backlash, is that the current Java API is no longer
supported. This means that Java developers writing code for
current BlackBerry devices need to re-orient themselves to one
of the technologies previously mentioned. As not all developers
will be willing to do this, there is concern in the community
that too many developers will “jump ship” and re-orient
themselves to competing platforms. Furthermore, since there is
no migration path for current generation apps, developers will
need to rewrite them from scratch for the new platform.

As RIM is fully aware of these concerns, they provide a
rich set of resources for developers: the Dev Alpha device,
simulators, sample projects on GitHub3 and frequently updated
documentation4.

3 github.com/blackberry
4 developer.blackberry.com/platforms/bb10

http://https://github.com/blackberry
http://https://developer.blackberry.com/platforms/bb10

34BlackBerry 10

C Native SDK
The BlackBerry NDK supports many open standards that allow
developers to bring their existing apps to the platform. To get
started, there is a Native Dev Site5 for this. With the C Native
approach your app is as close to the hardware as possible.
The BlackBerry 10 Native SDK includes everything you need
to develop programs that run under the BlackBerry 10 OS: a
compiler, linker, libraries, and an extensive Integrated Develop-
ment Environment (IDE). It is available for Windows, Mac and
Linux.

The core development steps are the following:

 — Request a signing account and keys
 — Set up the native SDK6

 — Install and configure the simulator7

 — Configure your environment for development and deploy-
ment

 — Create your first project
 — Run sample applications

As a new addition, Blackberry added Scoreloop8 support to
the NDK. Scoreloop is a technology that enables mobile social
gaming. It lets developers integrate social features into their
games, while preserving each game’s specific look and feel.

5 developer.blackberry.com/native/beta
6 developer.blackberry.com/native/beta/download
7 developer.blackberry.com/native/beta/download
8 developer.blackberry.com/native/beta/documentation/scoreloop

http://https://developer.blackberry.com/native/beta/
http://developer.blackberry.com/native/beta/download
http://developer.blackberry.com/native/beta/download
http://https://developer.blackberry.com/native/beta/documentation/scoreloop/

35BlackBerry 10

Some of the features currently available include:

 — User profile
 — Leaderboards
 — Challenges
 — Awards and achievements

C++ Cascades SDK
Developing with C++ and Cascades is another option. Cascades
has been designed to allow developers to build a BlackBerry
native application with strong support for easy UI implemena-
tion. The Cascades framework separates application logic from
the UI rendering engine. In an application, the declared UI
controls, their properties and their behavior are defined in an
Markup-Language called QML9. When your application runs, the
UI rendering engine displays your UI controls and applies any
transitions and effects that are specified. The Cascades SDK
provides the following features:

 — Cascades UI and platform APIs
 — Tools to develop your UI in C++, Qt Modeling Language

(QML), or both
 — Ability to take advantage of core UI controls and to create

new controls
 — Communication over mobile and Wi-Fi networks
 — Recording and playback of media files
 — Storage and retrieval of data
 — Certificate managing and cryptographic tools

9 en.wikipedia.org/wiki/QML

http://en.wikipedia.org/wiki/QML

36BlackBerry 10

The Cascades framework is built using the Qt application
framework. This architecture allows Cascades to leverage the Qt
object model, event model, and threading model. The slots and
signals mechanism in Qt allows for powerful and flexible inter-
object communication. The Cascades framework incorporates
features of fundamental Qt classes (such as QtCore, QtNetwork,
QtXml, and QtSql, and others) and builds on them. This lets
developers define things instead of programming them e.g. they
only need to define the duration and type of an animation,
instead of programming it. This approach is similar to iOS with
Core Animation.

To help developers with this new approach of UI building,
there is a tool called Cascades Builder. It is built into the QNX
Momentics IDE and let developers design a UI using a visual
interface. When a change to the code is made, you can see the
effects immediately in the design view. The developer has no
need to program a control, he can simply use a drag and drop
approach.

To get further information, there is a Cascades Dev Site10
available.

HTML5 WebWorks
If you are a Web/JavaScript developer, you can use your exist-
ing skills to write apps for Blackberry. There are two important
tools that you can use.

The first tool is the WebWorks SDK11. Among other features,
it allows you to write regular webpages and then package them
as native BlackBerry apps with ease. If you want to mimic the
Blackberry-UI style in HTML, there is a project on GitHub to

10 developer.blackberry.com/cascades
11 developer.blackberry.com/html5/download/sdk

http://https://developer.blackberry.com/cascades/
http://https://developer.blackberry.com/html5/download/sdk

37BlackBerry 10

help you. It´s called BBUi.js12. It provides extensive CSS to
make your regular webpage look like a native Blackberry-UI
application.

The second tool is the Ripple Emulator13. It is a Chrome
Browser extension that acts as a Blackberry 10 device simulator
for WebWorks apps. It even emulates hardware-specific features,
such as the accelerometer and the GPS sensor.

To get more information about developing with WebWorks
there is a HTML5 Dev micro-site14 with more information.

Adobe Air
If you are an existing AIR develeoper you can add BB10 as a
new distribution channel. You will use the BlackBerry 10 SDK
for Adobe AIR to create applications for BlackBerry devices.

You can use the SDK with Adobe ActionScript and Adobe
Flex APIs to create/port Blackberry Apps. These APIs provide
some unique UI components and predefined skins, as well as
listeners for events that are specific to BlackBerry devices.
Using the Adobe Flash Builder APIs, your application can also
access the features that are unique to mobile devices, such as
the accelerometer and geolocation information. Additionally,
you can harness the features of the BlackBerry 10 Native SDK
by developing AIR Native Extensions (ANE).

To begin developing your Adobe AIR application:

 — Download and install VMware Player for Windows or VMware
Fusion for Mac

 — Download the BlackBerry 10 Simulator

12 github.com/blackberry/bbUI.js
13 developer.blackberry.com/html5/download/ripple
14 developer.blackberry.com/html5

http://https://github.com/blackberry/bbUI.js
http://https://developer.blackberry.com/html5/download/ripple
http://https://developer.blackberry.com/html5/

38BlackBerry 10

 — Download the BlackBerry 10 SDK for Adobe AIR
 — Begin Development with Adobe Flash Builder, Powerflasher

FDT or Command Line Tools

For further information, visit the dedicated website15.

Android Runtime
You can use the BlackBerry Runtime for Android apps to run
Android 2.3.3 platform applications on BlackBerry 10. To use
the runtime, you must first repackage your Android applications
in the BAR file format, which is the file format required for an
application to run on BlackBerry 10.

As a developer, you will need to use one of the following
tools to repackage your application. These tools also check how
compatible your application is for running on BlackBerry 10, as
some of the APIs from the Android SDK may not be supported,
or may be only partially supported on the Blackberry platform.

 — Plug-in repackaging tool for Eclipse:
The main advantage of using this tool is the ability to
check for compatibility, repackage, debug, and run apps
on the BlackBerry PlayBook, BlackBerry Tablet Simulator,
BlackBerry 10 Dev Alpha Simulator and BlackBerry 10
device, all without leaving Eclipse. You can also use this
plug-in to sign your application before it is distributed. If
you want to test your application without signing it, you
can use the plug-in to create and install a debug token on
the target device or simulator.

15 developer.blackberry.com/air/beta

http://https://developer.blackberry.com/air/beta/

39BlackBerry 10

 — Online packager:
The main advantage of the BlackBerry Packager for Android
apps is that you can use it to quickly repackage your An-
droid application using only your browser. You can test the
application for compatibility, repackage it as a BlackBerry
Tablet OS or BlackBerry 10 compatible BAR file, and then
sign it so that it can be distributed through the BlackBerry
App World storefront.

 — Command-line repackaging tools:
One of the main advantages of using the BlackBerry SDK
for Android apps is that you can use it to repackage
multiple Android applications from the APK file format
to the BAR file format. In addition, you can also use this
set of command-line tools to check the compatibility of
your Android applications, sign applications, create debug
tokens, and create a developer certificate.

If you want to find out more about running Android apps on
BB10, please visit the dedicated website16.

Testing

BlackBerry continues to provide simulators for BB10 handsets
as separate downloads17. These simulators enable you to run
an app on a PC/Mac/Linux in the same way it would be run on
a real BlackBerry device. To assist with testing, the simulators
include features such as simulating incoming calls and setting
the signal strength, thus enabling you to check how your
application reacts in real-world scenarios.

16 developer.blackberry.com/android
17 us.blackberry.com/sites/developers/resources/simulators.html

http://https://developer.blackberry.com/android/
http://us.blackberry.com/sites/developers/resources/simulators.html

Signing

Many security-critical classes and features of the platform (such
as networking or file APIs) require an application to be signed
so that the publisher can be identified. To achieve this, you
need to obtain a signing key directly from BlackBerry18. The
signing itself is undertaken using the rapc tool, which also
packages the application. There is no difference between sign-
ing apps for BB10 signing and signing for previous OS versions.

Distribution

As with all previous OS versions, BB10 apps are distributed
via App World19. For paid applications, developers get a 70%
revenue share.

18 developer.blackberry.com/CodeSigningHelp/codesignhelp.html
19 appworld.blackberry.com

http://https://developer.blackberry.com/CodeSigningHelp/codesignhelp.html
http://appworld.blackberry.com

42iOS

iOS
iOS, running on the iPhone, iPod touch and iPad, is a very
interesting and very popular development platform, one com-
monly stated reason for this being the App Store. When it was
introduced in July 2008, the App Store took off like no other
marketplace had before. Now there are more than 725,000
applications in the App Store, and the number is growing daily.
This reflects the success of the concept, but it means that it is
getting ever harder to stand out in this mass of applications.

In March 2012, Apple announced that users have down-
loaded more than 25 billion iOS apps1. Nearly every quarter
year, device sales are reaching new all-time highs and there
is no sign of a slowdown in the billion downloads per month.
Over 400 million iOS devices have been sold to users willing
to try apps and pay for content, making the App Store one
of the most economically interesting targets for mobile app
development.2

The iOS SDK offers high-level APIs for a wide range of tasks,
which helps to cut down on development time. New APIs are
added in every major update of iOS for iPhone, such as MapKit
in iOS 3.0, (limited) multitasking in iOS 4.0, and Game Center
in iOS 4.1.

The iPad, which went on sale in April 2010, uses the same
operating system and APIs as the iPhone, therefore the skills
acquired in iPhone development can be used in iPad develop-
ment too. A single binary can even contain different versions
for both platforms with large parts of the code being shared.

1 www.apple.com/pr/library/2012/03/05Apples-App-Store-Downloads-Top-25-
Billion.html

2 techcrunch.com/2012/09/12/apple-has-sold-over-400-million-ios-devices-9-
5-growth-since-march

http://www.apple.com/pr/library/2012/03/05Apples-App-Store-Downloads-Top-25-Billion.html
http://www.apple.com/pr/library/2012/03/05Apples-App-Store-Downloads-Top-25-Billion.html
%20http://techcrunch.com/2012/09/12/apple-has-sold-over-400-million-ios-devices-9-5-growth-since-march
%20http://techcrunch.com/2012/09/12/apple-has-sold-over-400-million-ios-devices-9-5-growth-since-march

43iOS

Since the release of iOS 4.2, in November 2010, all iOS devices
sold have used a common firmware version. This absence of
fragmentation makes it possible to develop universal apps for
multiple device classes much more easily than on other mobile
platforms.

iOS 5.0, released in Q4 2011 includes various new features
and over 1,500 new APIs for developers. One of the most
interesting is iCloud, which provides for easy cloud storage of
application-specific data, documents and easy-to-implement
Twitter functionality. At WWDC 2012, Apple announced iOS 6.0,
which is estimated to be released in Q4 2012 and will introduce
a number of new features, such as Facebook integration,
Passbook and turn-by-turn navigation in Maps.

Prerequisites

Apple’s iOS SDK
In order to develop iPhone (and iPod Touch and iPad) apps, you
will need the iOS SDK, which can be downloaded at developer.
apple.com/devcenter/ios/index.action. This requires a member-
ship, which starts at USD 99/year. If you do not plan on
distributing your apps in the App Store and do not wish to test
your apps on an actual device, you can also download Xcode
from the Mac App Store for free.

The iOS SDK contains various applications that will allow you
to implement, test, and debug your apps. The most important
applications are:

 — Xcode, the IDE for the iOS SDK
 — Interface Builder, to build user interfaces for iPhone app

(integrated into Xcode as of Xcode 4.0)
 — Instruments, which offers various tools to monitor app

execution

http://https://developer.apple.com/devcenter/ios/index.action
http://https://developer.apple.com/devcenter/ios/index.action

44iOS

 — iOS Simulator, which enables you to test apps quickly,
rather than deploying them to a device.

The iOS SDK will work on any Intel-based Mac running Mac
OS X 10.7 (Lion) or 10.8 (Mountain Lion).

A guide to get you started and introduce you to the tools
is included in the SDK, as is a viewer application for API
documentation and sample code. References and guides are also
available online at developer.apple.com/library/ios/navigation/.

The SDK includes a large number of high-level APIs sepa-
rated into a number of frameworks and libraries, which include:

 — Cocoa Touch, which consists of the UI libraries, various
input methods such as multi-touch and accelerometer

 — Media frameworks, such as OpenAL, OpenGL ES, Quartz,
Core Animation and various audio and video libraries

 — Core Services, such as networking, SQLite, threading and
various other lower level APIs.

The list of available frameworks grows with each major
release of the iOS firmware.

Alternative Third-Party Development Environments
Since Apple relaxed their App Store distribution guidelines,
development using tools other than Objective-C, Cocoa Touch
and Xcode is officially permitted again and most commonly
used in game development, for example using the Unreal
Development Kit3, which Epic released for iOS to much fanfare
in December 2010.

Using third party development environments and languages
for iOS development offers a number of advantages and
disadvantages.

3 udk.com

http://https://developer.apple.com/library/ios/navigation/
http://www.udk.com

45iOS

The major advantage being that it is easy to support
multiple platforms from a single code base without having too
much of a maintenance burden. However, as experience with
desktop software has shown, cross-platform software develop-
ment rarely produces apps of outstanding quality. In most cases
the cross-platform tool concentrates on the lowest common
denominator and the resulting product does not feel like it
really belongs on any of the targeted platforms.

For an overview on cross-platform technologies in general,
please see the corresponding chapter in this guide.

There are, however, third party development environments
that focus solely on iOS development, such as MonoTouch4.

This platform enables developers to build iOS apps using
C# and .NET while taking advantage of iOS APIs. This makes it
the alternative that comes closest to the original SDK, while
still allowing code re-use, for example when creating similar
Windows Phone 7 apps.

Some alternative IDEs carry additional fees, which are in ad-
dition to Apple’s yearly development program charge and their
30% cut of all sales. Given the drawbacks of cross-platform
development mentioned earlier, using third party IDEs makes
the most sense for games, which can share almost all their code
between different platforms. Java IDE makers JetBrains recently
released an Objective-C IDE of their own, called AppCode5.

Implementation

Usually, you will want to use Apple’s high-level Cocoa Touch
APIs when developing for the iPhone. This means that you
will write Objective-C code and create your user interfaces in
Interface Builder, which uses the proprietary XIB file format.

4 monotouch.net
5 www.jetbrains.com/objc/

http://www.monotouch.net
http://www.jetbrains.com/objc/

46iOS

Objective-C is, as the name suggests, a C-based object-
oriented programming language. As a strict superset of C, it is
fully compatible with C, which means that you can use straight
C source code in your Objective-C files.

If you are used to other object-oriented languages such as
C++ or Java, Objective-C’s syntax might take some time getting
used to, but is explained in detail at developer.apple.com. What
separates Objective-C most from these languages is its dynamic
nature, lack of namespace support and the concept of message
passing vs. method calls.

A great way to get you started is Apple’s guide “Your First
iPhone Application”, which will explain various concepts and
common tasks in an iPhone developer’s workflow6. Also check
out some of the sample code that Apple provides online7 to
find out more about various APIs available to you.

Testing

As performance in the iPhone Simulator can be superior to the
performance on a device, it is absolutely vital that testing is
carried out on devices. It is highly recommended that you have
at least one example of each class of device you want to deploy
your apps on.

For example, an iPhone-only app shouldn’t need to be tested
separately on an iPad. However, it cannot hurt to have several
classes of device, including older models, since problems such
as excessive memory consumption sometimes will not present
themselves on newer hardware.

Testing on real devices is also important because touch-
based input is completely different from the pointer–driven UI
model.

6 developer.apple.com/iphone/manage/distribution/distribution.action
7 developer.apple.com/iphone/library/navigation/SampleCode.htm

http://https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/iphone/manage/distribution/distribution.action
http://developer.apple.com/iphone/library/navigation/SampleCode.htm

47iOS

End-user testing can be achieved by distributing builds of
the application to as many as 100 testers, through Ad-Hoc
Provisioning, which you can set up in the Program Portal8.
Each iPhone (and iPad/ iPod touch) has a unique identifier
(UDID – universal device identifier), which is a string of 40 hex
characters based on various hardware parts of the device.

If you choose to test using Ad-Hoc-Provisioning, simply
follow Apple’s detailed set-up instructions9. Every single step
is vital to success, so make sure that you execute them all
correctly.

With iOS 4.0, Apple has introduced the option for developers
to deploy Over-The-Air (OTA) Ad-Hoc builds of their apps to
beta testers. There are open source projects10 to facilitate this
new feature, as well as commercial services such as Testflight11
and HockeyApp12.

Google Toolbox for Mac13 runs test cases using a shell script
during the build phase, while GHUnit14 runs the tests on the
device (or in the simulator), allowing the developer to attach a
debugger to investigate possible bugs. Version 2.2 of the SDK
Apple included OCUnit; an example of how to create the unit
tests is available online15.

In iOS 4.0 Apple introduced a new tool, UIAutomation that
aims to automate the testing of your application by scripting
touch events. UIAutomation tests are written in JavaScript

8 developer.apple.com/iphone/library/referencelibrary/GettingStarted/
Learning_Objective-C_A_Primer/index.html

9 developer.apple.com/iphone/library/documentation/iPhone/Conceptual/
iPhone101/Articles/00_Introduction.html

10 github.com/therealkerni/hockeykit
11 www.testflightapp.com
12 www.hockeyapp.net
13 code.google.com/p/google-toolbox-for-mac
14 github.com/gabriel/gh-unit
15 www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode

developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://github.com/therealkerni/hockeykit
http://www.testflightapp.com
http://www.hockeyapp.net
http://code.google.com/p/google-toolbox-for-mac
http://github.com/gabriel/gh-unit
http://www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode

48iOS

and a full reference is available in the iOS Reference Library16.
Several other third party testing automation tools for iPhone
applications are available, including FoneMonkey17 and
Squish18.

Distribution

In order to reach the broadest possible audience, you should
consider distributing your app on the App Store. There are
other means, such as the Cydia Store for jailbroken iOS devices,
but the potential reach is not nearly as large as the App Store’s.

To prepare your app for the App Store, you will need a
512x512 version of your app’s icon, up to five screen shots of
your app, and a properly signed build of your app. Log in to
iTunes Connect and upload your app according to the onscreen
instructions.

After Apple has approved your application, which usually
should not take more than 2 weeks, your app will be available
to customers in the App Store. Due to past app submission
rejections, the approval process receives more complaints than
any other aspect of the iPhone ecosystem. Recently, Apple has
released their full App Store testing guidelines in order to give
developers a better chance to evaluate their app’s likelihood of
being approved. Also, the restrictions have been relaxed and
apps that were previously rejected have been approved after
being resubmitted.

Approximate review times as experienced recently by other
developers are gathered at reviewtimes.shinydevelopment.com19

16 developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/
UIAutomationRef/_index.html

17 www.gorillalogic.com/fonemonkey
18 www.froglogic.com/products
19 reviewtimes.shinydevelopment.com

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://www.gorillalogic.com/fonemonkey
http://www.froglogic.com/products
http://reviewtimes.shinydevelopment.com

for your information. However, there is no guarantee that an
app will be approved in the timeframe specified on the site.
This should be used as a guideline only.

Books

A number of great books have been written on iOS develop-
ment. Here is a short list, which is by no means complete, of
good tutorials and references:

Beginner books
These books are best for someone looking into getting started
with iOS development.

 — iPhone SDK Development by Bill Dudney and Chris
Adamson

 — Beginning iPhone 3 Development by Dave Mark & Jeff
LaMarche

50iOS

Intermediate books
Books suited for those who have had some exposure to the iOS
SDK and are looking to deepen their knowledge of the platform.

 — More iPhone 3 Development by Dave Mark and Jeff
LaMarche

 — Programming in Objective-C 2.0 by Stephen Kochan

Professional books
If you already have a good knowledge of the iOS SDK, one of
these books is sure to increase your skill set.

 — Cocoa Design Patterns by Erik M. Buck and Donald A.
Yacktman

 — Core Data by Marcus Zarra

Companion books
Books that every aspiring iOS developer should call their own,
because they impart knowledge beyond programming; such
as the importance of user experience, using case studies and
personal experiences.

 — Tapworthy by Josh Clark
 — App Savvy by Ken Yarmosh

51iOS

Community

One of the most important aspects of iOS development is the
community. Many iOS developers are very forthcoming and open
about what they do, and how they did certain things.

This activity has become even more visible as Twitter and
Github have gained momentum and become widely-known.

Search for iPhone, iPad or any other related search terms on
Github.com and you will find a lot of source code, frameworks,
tutorials, code snippets and complete applications – most of
them with very liberal licenses that even allow for commercial
use.

Practically all of the most important and most experienced
iOS developers use Twitter to share their thoughts about the
platform. There are many comprehensive lists of iOS developers
available, a notable and well-curated one being Robert Scoble’s
list20. Following such a list helps you stay up to date on current
issues and interesting information about iOS development
generally. What makes the community especially interesting
is that many iOS developers pride themselves on taking an
exceptional interest in usability, great user experience and
beautiful user interfaces. You can usually find out about the
most interesting trends on blog aggregators such as CocoaHub.
de and PlanetCocoa.org.

20 www.twitter.com/Scobleizer/iphone-and-ipad

http://CocoaHub.de
http://CocoaHub.de
http://PlanetCocoa.org
http://www.twitter.com/Scobleizer/iphone-and-ipad

Colossalcafé

53Java ME (J2ME)

Java ME (J2ME)
J2ME (or Java ME as it is officially called) is the oldest mobile
application platform still widely used. Developed by Sun
Microsystems, which has since been bought by Oracle, J2ME is
designed to run primarily on feature phones. It has been very
successful in this market segment, with an overwhelming ma-
jority of feature phones supporting it. J2ME is also supported
natively on Symbian and current BlackBerry smartphones.

J2ME’s major drawback is that, due to its age and primary
market segment, it does not fare all that well compared to
more modern smartphone platforms, such as Android, iPhone,
BlackBerry and Windows Phone: it offers a less powerful set
of APIs, often runs on less powerful hardware and tends to
generate less money for the developer. As a consequence,
J2ME’s popularity in the developer community has declined
significantly in recent years.

So why would you want to develop for J2ME? Mainly for one
reason: market reach. In Q2 2012, smartphone sales still ac-
counted only for 36.7% of total mobile phone sales worldwide1.
The majority of devices are still feature phones which usually
support Java ME. So if your business model relies on access to
as many potential customers as possible, or on providing extra
value to existing customers via a mobile application, then J2ME
might still be a great choice.

However, if your business model relies on direct application
sales, or if your application needs to make use of state-of-
the-art features and hardware, you might want to consider
targeting a different platform (such as Android, BlackBerry,
iPhone or Windows Phone).

1 gartner.com/it/page.jsp?id=2120015

http://www.gartner.com/it/page.jsp?id=2120015

Java ME (J2ME)

Prerequisites

To develop a Java ME application, you will need:

 — The Java SDK2 (not the Java Runtime Environment) and an
IDE of your choice, such as Eclipse Pulsar for Mobile Devel-
opers3, NetBeans4 with its Java ME plug-in or IntelliJ5.

 — An emulator, such as the Wireless Toolkit6, the Micro
Emulator7 or a vendor specific SDK or emulator.

 — Depending on your setup you may need an obfuscator like
ProGuard8. If you build applications professionally you will
probably want to use a build tool such as Maven9 or Ant10
also.

 — You may want to check out J2ME Polish, the open source
framework for building your application for various
devices11.

Complete installation and setup instructions are beyond
the scope of this guide, please refer to the respective tools’
documentation.

Beginners often like to use NetBeans, with the Java ME
plug-in installed. Also download and read the JavaDocs for the
most important technologies and APIs: You can download most
Java-Docs from www.jcp.org. There are a couple of useful vendor

2 oracle.com/technetwork/java/javame/downloads/index.html
3 eclipse.org
4 netbeans.org
5 jetbrains.com
6 oracle.com/technetwork/java/download-135801.html
7 microemu.org
8 proguard.sourceforge.net
9 maven.apache.org
10 ant.apache.org
11 j2mepolish.org

http://www.jcp.org
http://www.oracle.com/technetwork/java/javame/downloads/index.html
http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com
http://www.oracle.com/technetwork/java/download-135801.html
http://www.microemu.org
http://www.proguard.sourceforge.net
http://maven.apache.org
http://ant.apache.org
http://www.j2mepolish.org

55Java ME (J2ME)

specific APIs that should be tracked down manually from the
vendor’s pages (such as the Nokia UI API and Samsung APIs).

Implementation

The Java ME platform is fairly straight-forward: it comprises
the Connected Limited Device Configuration (CLDC)12 and the
Mobile Internet Device Profile (MIDP)13, both are quite easy
to understand. These form the basis of any J2ME environment
and provide a standardized set of capabilities to all J2ME
devices. As both CLDC and MIDP were designed a decade ago,
the default set of capabilities they provide is rudimentary by
today’s standards.

Manufactures can supplement these rudimentary capabilities
by implementing various optional Java Specification Requests
(JSRs). JSRs exist for everything from accessing the device’s
built in calendar, address book and file system (JSR 75); to
using the GPS (JSR 179) and Near Field Communication (JSR
257). For a comprehensive list of JSRs related to Java ME
development, visit the Java Community Process’ “List by JCP
Technology”14.

It is very important to remember that not all JSRs are
available on all devices, so capabilities available on one device
might not be available on another device, even if the two
devices have similar hardware.

The Runtime Environment
J2ME applications are called MIDlets. A MIDlet’s lifecycle is
quite simple: it can only be started, paused and destroyed. On
most devices, a MIDlet is automatically paused when mini-

12 java.sun.com/products/cldc/overview.html
13 java.sun.com/products/midp/overview.html
14 jcp.org/en/jsr/tech?listBy=1&listByType=platform

http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/midp/overview.html
http://www.jcp.org/en/jsr/tech?listBy=1&listByType=platform

56Java ME (J2ME)

mized; it cannot run in the background. Some devices support
concurrent application execution, so it is possible for applica-
tions to run in the background. However, this usually requires
the use of vendor-specific APIs and/or relies on device-specific
behavior, which can cause fragmentation issues.

MIDlets also run in isolation from one another and are very
limited in their interaction with the underlying operating sys-
tem – these capabilities are provided strictly through optional
JSRs (for example, JSR 75) and vendor-specific APIs.

Creating UIs
You can create the UI of your app in several ways:

1. Highlevel LCDUI components: you use standard UI
components, such as Form and List

2. Lowlevel LCDUI: you manually control every pixel of your
UI using low-level graphics functions

3. SVG: you draw the UI in scalable vector graphics then use
the APIs of JSR 226 or JSR 28715.

In addition, you will find that some manufacturers provide
additional UI features. For example, Nokia recently introduced
the Touch and Type UI to its Series 40 platform. To enable
developers to make best use of this UI in their applications,
the Nokia UI API was extended to provide features to capture
screen gestures and provide controlling data for UI animations.
Similarly Samsung provide pinch zoom features in their latest
Java ME APIs.

There are also tools that can help you with the UI develop-
ment.

All of them use low-level graphics to create better looking

15 jcp.org/en/jsr/detail?id=287

http://www.jcp.org/en/jsr/detail?id=287

57Java ME (J2ME)

and more powerful UIs than are possible with the standard
highlevel LCDUI components.

1. J2ME Polish16: This tool separates the design in CSS and
you can use HTML for the user interface. It is backward-
compatible with the highlevel LCDUI framework

2. LWUIT17: A Swing inspired UI framework
3. Mewt18: Uses XML to define the UI

One very important aspect to consider when designing your
UI is the typical screen resolution for Java ME devices. The
vast majority of Java ME devices have one of the following
resolutions: 240x320, 176x208, 176x220, 128x160, 128x128
or 360x640 pixels. By far the most popular is 240x320, while
360x640 is a common resolution for high-end Java ME devices
(typically those running Symbian or Blackberry) and 176 x
208/220 is a common resolution for low-end devices. You will
also encounter devices that have these resolutions in landscape,
for example 320x240 instead of 240x320 pixels.

Handling so many different resolutions can be a challenge.
Your best approach is to create UI layouts that can scale

well across all of them, in the same way that web pages scale
well across different browser window sizes. You can also create
custom UIs for each resolution, though this is not recommend-
ed because it is time consuming, error prone and expensive.

Another aspect worth considering is the size of your
application’s assets, especially its graphical assets. Whenever
possible, your assets should be optimized, in order to keep your
application’s size as small as possible. This results in cheaper
downloads for your users (as less data traffic is needed) and

16 j2mepolish.org
17 lwuit.java.net/
18 mewt.sourceforge.net

http://www.j2mepolish.org
http://lwuit.java.net/
http://www.mewt.sourceforge.net

58Java ME (J2ME)

greater market reach (as some devices have a limit on the
maximum application size). A great free tool for this is PNG-
Gauntlet19, which can optimize your graphical assets without
compromising quality.

Despite the platform’s limitations, it is quite possible to
create great looking and easy to use Java ME user interfaces,
particularly if one of the tools mentioned above is used.

Open Source
There is a rich open source scene in the J2ME sector.
Interesting projects can be found via the blog on
opensource.ngphone.com.

You will also find fascinating projects on the Mobile and
Embedded page of java.net20, for example the Bluetooth project
Marge21.

Testing

Because of the fragmentation in the various implementations of
Java ME, testing applications is vital. Test as early and as often
as you can on a mix of devices. Some emulators are quite good
(personal favorites are BlackBerry and Symbian), but there are
some things that have to be tested on devices.

Thankfully, vendors like Nokia22 and Samsung23 provide
subsidized or even free remote access to selected devices.

19 pnggauntlet.com
20 community.java.net/mobileandembedded/
21 marge.java.net/
22 forum.nokia.com/rda
23 innovator.samsungmobile.com

http://www.pnggauntlet.com
http://community.java.net/mobileandembedded/
http://marge.java.net/
http://www.forum.nokia.com/rda
http://innovator.samsungmobile.com

59Java ME (J2ME)

Automated Testing
There are various unit testing frameworks available for Java ME,
including J2MEUnit24, MoMEUnit25 and CLDC Unit26; System and
UI testing is more complex given the security model of J2ME,
however JInjector27 is a flexible byte-code injection framework
that supports system and UI testing. Code coverage can also be
gathered with JInjector.

Porting

One of the strengths of the Java environment for mobile
devices is that it is backed by a standard, so it can be
implemented by competing vendors. The downside is that the
standard has to be interpreted, and this interpretation process
can cause differences in individual implementations. This
results in all kinds of bugs and non-standard behavior. In the
following sections we outline different strategies for porting
your applications to all Java ME handsets and platforms.

Lowest Common Denominator
You can prevent many porting issues by limiting the functional-
ity of your application to the lowest common denominator. In
the J2ME world this usually means CLDC 1.0 and MIDP 1.0. If
you only plan to release your application in more developed
countries/ regions, you may consider targeting CLDC 1.1 and
MIDP 2.0 as the lowest common denominator (without any
additional APIs or JSR support).

Depending on the target region for the application you
might also consider using Java Technology for the Wireless

24 j2meunit.sourceforge.net
25 momeunit.sourceforge.net
26 snapshot.pyx4me.com/pyx4me-cldcunit
27 code.google.com/p/jinjector

http://www.j2meunit.sourceforge.net
http://www.momeunit.sourceforge.net
http://snapshot.pyx4me.com/pyx4me-cldcunit
http://www.code.google.com/p/jinjector

60Java ME (J2ME)

Industry (JTWI, JSR 185) or the Mobile Service Architecture
(MSA, JSR 248) as your baseline. Both extensions are designed
to ensure a common implementation of the most popular
JSRs. They are supported by many modern devices and provide
many more capabilities to your applications. However, in some
regions such as Africa, South America or India you should be
aware that using these standards may limit the number of your
potential users, because the more common handsets in these
regions do not implement those extensions.

Using the lowest common denominator approach is typically
easy: There is less functionality to consider. However, the user
experience may suffer if your application is limited in this way,
especially if you want to port your application to smartphone
platforms later. So this approach is a good choice for simple
applications – for comprehensive, feature-rich applications it
may not be the way to go.

Porting Frameworks
Porting frameworks help you deal with fragmentation by
automatically adapting your application to different devices
and platforms. Such frameworks typically feature the following
components:

 — Client libraries that simplify development
 — Build tool chains that convert code and resources to

application bundles
 — Device databases that provide information about devices
 — Cross compilers to port your application to different

platforms

For Java ME some of the options you can choose from are:
Celsius from Mobile Distillery28 that is licensed per month,

28 mobile-distillery.com

http://www.mobile-distillery.com

61Java ME (J2ME)

Bedrock from Metismo29 that provides a suite of cross compilers
on a yearly license fee and J2ME Polish from Enough Software30
that is available under both the GPL Open Source license and a
commercial license. Going in the other direction (from C++ to
Java ME) is also possible with the open source MoSync SDK31.

For more information about cross-platform development and
the available toolsets, please see the “Programming With Cross-
Platform Tools” chapter.

Good frameworks enable you to use platform and device
specific code in your projects, so that you can provide the best
user experience. In other words: a good porting framework does
not hide device fragmentation, but makes the fragmentation
more manageable.

Signing

The Java standard for mobile devices differentiates between
signed and unsigned applications. Some handset functionality
is available to trusted applications only. Which features are
affected and what happens if the application is not signed
but uses one of those features, is largely dependent on the
implementation.

On one phone the user might be asked once to enable the
functionality, on another they will be asked every time the
feature is used and on a third device they will not be able to
use the feature at all without signing. Most implementations
also differentiate between the certification authorities who
have signed an application.

Applications signed by the manufacturer of a device enjoy
the highest security level and can access every Java API

29 metismo.com
30 enough.de
31 mosync.com

http://www.metismo.com
http://www.enough.de
http://www.mosync.com

available on the handset. Applications signed with a carrier
certificate are similarly trusted.

Applications signed by JavaVerified32, Verisign33 or Thawte34
are on the lowest security level. To make matters worse, not
every phone carries all the necessary root certificates. And, in
the past, some well known device vendors have even stripped
away all root certificates. The result is something of a mess, so
consider signing your application only when required, that is
when deploying to an app store or when you absolutely need
access to security constrained features. However, in some cases
an app store may offer to undertake the signing for you, as
Nokia Store does.

Another option is to consider using a testing and certifica-
tion service provider and leaving the complexity to them.

Intertek35 is probably the largest such supplier.

Distribution

J2ME applications can be installed directly onto a phone in a
variety of ways; the most commonly used methods are over a
Bluetooth connection, via a direct cable connection or Overthe-
Air (OTA). However, app stores are probably the most efficient
way to distribute your apps.: They manage the payment,
hosting and advertisements, taking a revenue share for those
services. Some of the most effective stores include:

32 javaverified.com
33 verisign.com
34 thawte.com
35 intertek.com/wireless-mobile

http://www.javaverified.com
http://www.verisign.com
http://www.thawte.com
http://www.intertek.com/wireless-mobile

63Java ME (J2ME)

 — Handmark36 and Mobile Rated37 provide carrier and vendor
independent application stores.

 — GetJar38 is one of the oldest distributors for free mobile
applications - not only Java applications.

 — Nokia Store39 targets Nokia users worldwide and provides
a revenue share to the developer at 70% from credit card
billing and 60% from operator billing

 — Carriers are in the game also, such as Orange40 and O241.

Basically almost everyone in the mobile arena has an-
nounced an app store. An overview of the available app stores
(not those selling J2ME apps alone) can be found in the WIP
App Store Catalogue42.

Furthermore there are various vendors who provide solutions
for provisioning of Java applications over a Bluetooth connec-
tion, including Waymedia43 and Futurlink44.

36 store.handmark.com
37 mobilerated.com
38 getjar.com
39 publish.ovi.com
40 orangepartner.com/site/enuk/mobile/application_shop/app_shop_client/p_

app_shop_client.jsp
41 mobileapps.o2online.de
42 wipconnector.com/appstores/
43 waymedia.it
44 www.futurlink.com

http://store.handmark.com
http://www.mobilerated.com
http://www.getjar.com
http://www.publish.ovi.com
http://www.orangepartner.com/site/enuk/mobile/application_shop/app_shop_client/p_app_shop_client.jsp
http://www.orangepartner.com/site/enuk/mobile/application_shop/app_shop_client/p_app_shop_client.jsp
http://mobileapps.o2online.de
http://www.wipconnector.com/appstores/
http://www.waymedia.it
http://www.futurlink.com

65Qt

Qt
Pronounced “cute”, not “que-tee”. Qt is an application
framework that is used to create desktop applications and
even a whole desktop environment for Linux, the KDE Software
Compilation. The reason many developers have used Qt for
desktop apps, is that it frees them from having to consider the
underlying platform a single Qt codeline can be compiled to run
on Microsoft Windows, Apple Mac, and Linux.

When Nokia acquired Trolltech the company behind Qt it
was with the goal of bringing this same ease of development
for multiple platforms to Nokia mobile phones. At the time of
writing, Nokia was in the process of selling Qt to Digia. When
the acquisition was announced, Digia indicated that it plans to
“quickly enable Qt on Android, iOS and Windows 8 platforms”1.

With Nokia winding down its Symbian portfolio, choosing Qt
is not an easy decision. While there is still a significant number
of Symbian phones in use and a continued demand for apps on
these phones, the opportunities will decline. At the same time
the opportunities that will be created by Digia’s plans is hard
to quantify, however for those willing to make the investment
in Digia’s vision the rewards could be significant.

The challenge when developing with C and C++ is that these
languages place all the responsibility on you, the developer. For
example, if you make use of memory to store some data in your
application, you have to remove that data and free the memory
when it is no longer needed (if this is not done, the dreaded
memory leak occurs).

Qt uses standard C++ but makes extensive use of a special
preprocessor (called the Meta Object Compiler, or moc) to deal
with many of the challenges faced in standard C++ develop-

1 www.digia.com/en/Home/Company/News/Digia-to-acquire-Qt-from-Nokia/

http://www.digia.com/en/Home/Company/News/Digia-to-acquire-Qt-from-Nokia/

66Qt

ment. As a consequence Qt is able to offer powerful features
that are not burdened by the usual C++ housekeeping. For
example, instead of callbacks, a paradigm of signals and slots
is used to simplify communication between objects2; the
output from one object is a “signal” that has a receiving “slot”
function in the same or another object.

Adding Qt features to an object is simply a case of including
QObject (which is achieved by adding the Q_OBJECT macro to
the beginning of your class). This meta-object adds all the
Qt specific features to an object. Qt then provides a range of
objects for realizing GUIs created using Qt Quick, building
complex graphical views (the QGraphicView object), managing
network connections and communications, using SVG, parsing
XML, and using scripts among others.

Many developers who have used Qt report that applications
can be written with fewer lines of code and with greater in-
built reliability when compared to coding from scratch in C++.
As a result less time is needed to create an application and less
time is spent in testing and debugging.

For mobile developers using Qt is free of cost. It benefits
from being open source also, with a large community of
developers contributing to the content and quality of the Qt
APIs. Should you wish to get involved in developing Qt, you
can do so through the Qt Project3.

Prerequisites

Qt SDK4 installs everything you need to create, test, and debug
applications for Symbian phones and the Nokia N9 smartphone,
as well as desktop applications, from a single package.

2 doc.qt.nokia.com/4.7-snapshot/signalsandslots.html
3 qt-project.org/
4 developer.nokia.com/Develop/Qt/Tools

http://doc.qt.nokia.com/4.7-snapshot/signalsandslots.html
http://qt-project.org/
http://developer.nokia.com/Develop/Qt/Tools

67Qt

All versions offer tools for compiling Symbian and Nokia
N9 apps, with Symbian apps being compiled in the Linux and
Apple Mac versions using the Remote Compiler service.

Creating Your Application

Qt SDK is built around the Qt Creator development tool. Using
Qt Creator you define most of your application visually and then
add the specific program logic through a code editor, which
offers full code completion support and integrated help. One of
the neat features of Qt is Qt Quick5, a comprehensive solution
for declarative UI definition. Qt Quick uses QML, a language
similar to JavaScript’ to define the UI; but also provides Qt
Quick Components a set of predefined UI components that
match the UI style seen on the latest Symbian phone and the
Nokia N9 that further speed up UI development.

While Qt Quick generally simplifies UI development, one
of its biggest advantages is that the tools within Qt Creator
enable the UI to be defined by graphic designers who do not
have to be aware of the technical programming aspects.

In the past, one of the challenges with cross platform
applications for mobile has been accessing platform features:
Anytime you want to find the phone’s location or read a contact
record it has been necessary to revert back to the platform’s
native APIs6.

This is where the Qt Mobility APIs come in. The APIs
provided by Qt Mobility offer a common interface to phone data
such as contacts, location, messages, NFC, and several others.

This means that if you, for example, need the phone’s
location the same API will obtain the location information on

5 qt.nokia.com/qtquick/
6 qt.nokia.com/products/qt-addons/mobility/

http://qt.nokia.com/qtquick/
http://qt.nokia.com/products/qt-addons/mobility/

Qt

both a Symbian phone and the Nokia N9. (The Qt SDK enables
you to work with the native APIs if you want to, as it includes
the Symbian and Nokia N9’s MeeGo 1.2 Harmattan APIs too.)
As with Qt in general, working with the mobility APIs is
quite straightforward. The following code, for example, shows
that only a few lines are needed to access a phone’s current
location:

void positionUpdated(const QGeoPositionInfo
&gpsPos) {
}

However, do be aware that Qt does not yet insulate you from
all the differences between platforms. For example, the X and
Y axes reported from the phone accelerometers are transposed
between Symbian phones and the Nokia N9. A simple enough
issue to address with a #IFDEF, but still an issue to be aware
of.

If you are already familiar with C++ development for the
desktop, creating Qt applications for Symbian phones and the
Nokia N9 is straightforward.

Once you have mastered the Qt APIs you should find you can
code much faster and with fewer of the usual C++ frustrations
particularly if you take advantage of Qt Quick to create your
UI. Qt has many interesting features, such as WebKit integra-
tion enabling you to include web content into your app and
scripting that can be used to add functionality quickly during
development or change runtime functionality. It is also worth
pointing out that, because Qt applications are compiled to the
platform they will run on, they deliver very good performance,
too. For most applications the levels of performance will
be comparable to that previously achieved by hardcore
native applications only.

69Qt

Testing

Qt SDK includes a lightweight simulator enabling applications
to be tested and debugged on the development computer (Qt
SDK runs under Microsoft Windows, Ubuntu Linux and Apple
Mac OS X). The simulator includes tools that enable phone
data, such as location or contacts records, to be defined so
that the application’s functionality can be tested fully. The
simulator does not, however, eliminate the need for on phone
testing.

In addition, the Qt SDK includes tools to perform on-phone
debugging on Symbian phones and the Nokia N9. This feature
can be handy to track down bugs that come to light only when
the application is running on a phone. Such bugs are rare and
tend to surface in areas such as comms, where the Qt simulator
uses the desktop computer’s hardware, hardware that differs
from the equivalent technology on a mobile phone.

Packaging

For a Qt application to run on a mobile phone the Qt API
framework has to be present. The Nokia N9 smartphone has
the Qt APIs built in. In addition, it provides a built-in update
mechanism that will install the necessary framework compo-
nents, should there be newer or additional versions needed by
the app.

For Symbian phones the situation is a little different.
Symbian^3 (including Symbian Anna and Belle) phones

have the APIs built in. However, Symbian does not include a
built-in mechanism to add the APIs to earlier phones or load
new or updated APIs to Symbian^3 phones. The solution is
Smart Installer, which is included automatically in Symbian
apps built with Qt SDK. As an app is installed on a Symbian

70Qt

phone, Smart Installer checks for the presence of the necessary
Qt packages and, if they are not there, downloads and installs
them. Using this mechanism, Qt apps can be easily targeted at
almost all recent S60 and Symbian phones.

Signing

As Qt applications install as native applications on Symbian
phones and the Nokia N9, they need to comply with each
platform’s signing requirements.

Qt apps for the Nokia N9 need to be signed, but this is
done for you during the Nokia Publisher process. To enable
testing the Nokia N9 smartphone has a “developer” capability
that enables unsigned apps to be installed and run for testing
purposes. For applications to be installed on Symbian phones,
signing is necessary even during testing. If you choose to use
Nokia Store to distribute your apps, Nokia will organize for your
Symbian app to be Symbian Signed, at no cost.

Unlike the Nokia N9, Symbian phones do not have a
‘developer’ mode. To enable apps to be tested they have to be
signed with a “developer certificate”. The process you have to
follow is straightforward and described in full in the Distribute
section of the Nokia Developer website7, but in summary:

 — You sign up as a Nokia Publisher8

 — You provide up to five phone IMEIs and request a UID for
your application

 — The Nokia Publisher team provides you with a “developer
certificate” and a UID for your app

 — You create your app with the UID provided, sign your app
during development using the “developer certificate” to en-

7 www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
8 publish.nokia.com

http://www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
http://publish.nokia.com

71Qt

able it to run the five phones elected and test it to ensure
it complies with the Symbian Signed Test Criteria9

 — Once tested, you submit an unsigned copy of the app to
the Nokia publishing portal

Distribution

Nokia Store is the latest iteration of the Nokia app store
solution, with a history stretching back to 2003. The store now
delivers in excess of 10 million downloads a day, and the store’s
traffic is increasing steadily.

Importantly, once an application has met the store’s quality
requirements beyond removing indecent or illegal applications
there are no restrictions on the types of applications that can
be distributed.

So you will find many applications in Nokia Store that com-
pete directly against offerings from Nokia, such as alternative
browsers, music players, and email applications.

To use Nokia Store you need to register and pay a onetime
€1 fee registration is open to both companies and individuals.
When your application starts selling your receive 70% of the
sale price of revenue after any applicable taxes and costs.

One significant advantage of Nokia Store is that consum-
ers in 53 countries can use operator billing. This is because
operator billing is universal and trusted, but it is also available
in countries where credit card ownership is low. As a result, for
each $1 in credit card revenue you can expect to receive over
$10 from operator billing purchases – making operator billing
the most lucrative option for generating revenue.

9 www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_
V4_Wiki_version

http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version
http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version

73Windows Phone

Windows Phone
Microsoft made a fresh start with the Windows Phone platform.
The Windows Mobile operating system was declining in both
user acceptance and market share, so Windows Phone was
created as Microsoft’s response to competing platforms,
particularly in the consumer market. However, Windows Phone
is designed for business users as well as consumers, and offers
a simple-to-use interface that focuses on typography and
content.

In early 2011 Nokia announced that Windows Phone would
become its smartphone platform. This partnership was expected
to push the market share significantly1. Apparently the high
hopes have not been fullfilled by now: According to Gartner,
only 2.7% of all smartphones sold in Q2 2012 were based on
Windows Phone2.

UI Design

Windows Phone introduced a new UI paradigm called Modern
UI3that now has been extended to the Xbox 360 and Windows 8
as well. This UI paradigm contains following principles:

 — Content not Chrome removes unnecessary ornaments and
lets the content itself be the main focus. You should also
restrain from using every available pixel, as whitespace
gives balance and emphasis to content.

 — Alive in motion adds depths to the otherwise flattened
out design with rich animations

1 microsoft.com/Presspass/Features/2010/dec10/12-21AchimBergQA.mspx
2 gartner.com/it/page.jsp?id=2120015
3 wikipedia.org/wiki/Metro_%28design_language%29

http://www.microsoft.com/Presspass/Features/2010/dec10/12-21AchimBergQA.mspx
http://www.gartner.com/it/page.jsp?id=2120015
http://wikipedia.org/wiki/Metro_%28design_language%29

74Windows Phone

 — Typography is beautiful moves fonts to first class citizens
within Metro. The Helvetica inspired Segoe font of Windows
Phone matches the modernist approach.

 — Authentically digital design does not try to mimic real
world object but instead focuses on the interactions that
are available to digital solutions.

You should embrace the Modern UI design principles in
your application, especially when porting over existing apps.
Designers will find many inspirations and information in the
Microsoft Design Toolbox4. You should also use one of the
available grid solutions. A grid helps you to align your content
with the Modern UI style. One solution that you can also use
in the emulator is MetroGridHelper5. Important for the overall
experience are also the ‘live tiles’, small widgets that reside on
the start screen. You can update them programmatically or even
remotely using push notifications.

Development

Windows Phone development is undertaken in C# or VB.NET,
using the Microsoft Visual Studio IDE or Expression Blend.
Applications are created using Silverlight, principally for
event-driven applications, and XNA, principally for games
driven by a “game loop”, although both technologies can be
used in a single application. The user interface for Silverlight
applications can be created either in Microsoft Visual Studio or
Microsoft Expression Blend. Additionally you can create HTML 5
based apps using PhoneGap6, however web development is not
covered in this chapter.

4 microsoft.com/design/toolbox/
5 jeff.wilcox.name/2011/10/metrogridhelper
6 phonegap.com

http://www.microsoft.com/design/toolbox/
http://www.jeff.wilcox.name/2011/10/metrogridhelper/
http://phonegap.com

75

The Windows Phone 7.1 SDK

Push Notifications

Sensor and location
data

Marketplace

Bing Maps Scheduler Application pause / resume

Calendar and contact data

Linq to
SQL

Fast app
switching

Network sockets

Motion library for
Augmented Reality

Advertising SDK

Performance
monitoring

HTML 5

Background audio
and file transfer

Launchers, choosers
& tasks

FMRadio

Tiles with access to
front and back

Direct camera access Device intergration

Input

Content

AudioGraphics

XBOX Live

Media

Common Class Library

Threading Collections Configuration

Text
File
I/O

Network-
ing

Diagnostics Security

RuntimeReflection Globalization

Silverlight Presentation and Media XNA Frameworks

Controls Drawing Media

Markup ShapesNavigation

Isolated storage StylesAnimations

76Windows Phone

The Windows Phone SDK is free of charge and includes
“Express” editions of both Visual Studio 2010 and Expression
Blend. While the Express editions support everything necessary
to develop for Windows Phone, many extra features found in
the commercial editions are not available. The SDK also includes
a device emulator to run code against. The device emulator
uses hardware acceleration and performs reasonably well when
running 3D XNA games. In addition to basic functionality, the
emulator has advanced features for location input (using Bing
Maps) and accelerometer simulation.

It is important to consider which platform you should
leverage when building your application.

Use Silverlight if… Use XNA if…

…you want to create an event-
driven application or a casual
game.

…you want to create a 2D or
3D game.

…you want to use standard
Windows Phone controls.

…you want to manage art assets
such as models, meshes, sprites,
textures and animations.

…you want to target Windows
Phone, Windows and the web;
re-using some code.

…you want to target Windows
Phone, Windows, and Xbox 360;
re-using lots of code.

While the most common scenario is to use Silverlight for
apps and XNA for games, you can also create Silverlight games
and XNA apps, depending on your needs. It is also possible
to host XNA inside your Silverlight application. This could be
used to display a 3D model inside an event-driven Silverlight
application, or to easily create stylish Silverlight-based menus
around a full XNA game.

77Windows Phone

Functions And Services

Windows Phone applications have access to input data such
as location, multi-touch screen, accelerometer, gyroscope, and
microphone.

Available services include FM radio, media playback, raw
camera feed and push notifications7 that can also update the
live tiles of your app. You can also consider using the freely
available SkyDrive cloud space for you app8.

Multitasking And Application Lifecycle

Windows Phone has a limited form of multitasking that
suspends applications in the background and allows for fast
application switching. Currently, the only processes that can be
run in the background, after an application has been left, are
audio playback and file transfer. Applications can also schedule
to run arbitrary code in the background at an interval (code
which is known as Background Agents). Background Agents
are allowed limited use of resources and may be stopped or
skipped if the OS determines that the phone needs to conserve
resources.

Applications suspended in the background may be closed
automatically if the OS determines resources are needed
elsewhere.

To create the appearance of an application that was never
closed, Windows Phone has a well-documented application
lifecycle called Tombstoning9. To make Tombstoning possible,

7 msdn.microsoft.com/en-us/library/ff402558%28v=vs.92%29.aspx
8 windowsteamblog.com/windows_live/b/windowslive/archive/2011/12/07/

skydrive-apis-for-docs-and-photos-now-ready-to-cloud-enable-apps-on-
windows-8-windows-phone-and-more.aspx

9 msdn.microsoft.com/en-us/library/ff817008(v=vs.92).aspx

http://msdn.microsoft.com/en-us/library/ff402558%28v=vs.92%29.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/12/07/skydrive-apis-for-docs-and-photos-now-ready-to-cloud-enable-apps-on-windows-8-windows-phone-and-more.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/12/07/skydrive-apis-for-docs-and-photos-now-ready-to-cloud-enable-apps-on-windows-8-windows-phone-and-more.aspx
http://windowsteamblog.com/windows_live/b/windowslive/archive/2011/12/07/skydrive-apis-for-docs-and-photos-now-ready-to-cloud-enable-apps-on-windows-8-windows-phone-and-more.aspx
http://msdn.microsoft.com/en-us/library/ff817008(v=vs.92).aspx

Windows Phone

the Windows Phone framework provides the hooks needed
to perform actions during different stages of the application
lifecycle (such as caching and restoring data and UI states).

Native Code

In contrast to some other platforms, developers cannot execute
native code or access the device hardware directly in Windows
Phone. While this restricts the extensibility of the platform and
arguably limits the type of applications that can be developed,
it also ensures applications are sandboxed and cannot do any-
thing that will permanently affect the usability of the phone.

This means that core platform features – such as the dialer
and onscreen keyboard – cannot be replaced or extended, and
low-level access to Wi-Fi or Bluetooth radios is not possible.
However, for most applications you are unlikely to encounter
any restrictions that will affect your ability to deliver user
features.

Distribution

Applications for Windows Phone are distributed through the
Microsoft Marketplace service. While application content is
reviewed and restricted in a way similar to the Apple App Store,
Microsoft provides fairly comprehensive guidelines for submis-
sion, available at App Hub10. Although developer tools are
provided free of charge, a paid App Hub account is necessary
to deploy software to devices and Marketplace. Currently, a
developer account costs 99 USD for an annual subscription
and includes 100 free app submissions and unlimited paid app
submissions. The fee is waived for students in the DreamSpark11

10 dev.windowsphone.com
11 www.dreamspark.com

http://dev.windowsphone.com
http://www.dreamspark.com

79Windows Phone

and for the first year for Nokia Publish developers. The Market-
place also provides for time-limited beta distribution and offers
a private distribution channel for enterprises. You can use the
Windows Phone Marketplace Test Kit12 to test your application
locally before you submit them.

Testing And Analytics

You can unit test applications using the Windows Phone Test
Framework13 or the Silverlight Unit Test Framework14.

For behavior-driven development, the Windows Phone Test
Framework by Expensify15 is available. This will allow you to
execute business requirements as end-to-end tests, driving
automation of the emulator.

For developers wishing to collect runtime data and analytics,
there are several options. Localytics16, PreEmptive Solutions17
and Flurry18 all provide analytics tools and services that are
compatible with Windows Phone 7. Developers can also use
the Silverlight Analytics Framework19 to connect to a variety of
third-party tracking services such as Google Analytics. Starting
with the Windows Phone SDK 7.1 update, there are robust
performance monitoring tools available in Visual Studio.

12 msdn.microsoft.com/en-us/library/hh394032%28v=VS.92%29.aspx
13 wptestlib.codeplex.com
14 jeff.wilcox.name/2011/06/updated-ut-mango-bits/
15 github.com/Expensify/WindowsPhoneTestFramework/
16 localytics.com/docs/windows-phone-7-integration/
17 preemptive.com/windowsphone7.html
18 flurry.com
19 msaf.codeplex.com/

http://msdn.microsoft.com/en-us/library/hh394032%28v=VS.92%29.aspx
http://wptestlib.codeplex.com
http://www.jeff.wilcox.name/2011/06/updated-ut-mango-bits/
http://https://github.com/Expensify/WindowsPhoneTestFramework/
http://www.localytics.com/docs/windows-phone-7-integration/
http://www.preemptive.com/windowsphone7.html
http://www.flurry.com
http://msaf.codeplex.com/

80Windows Phone

Monetization

There are two primary methods of monetizing your Windows
Phone apps, as paid for applications and as ad-servings ap-
plications. For paid applications, the Windows Phone framework
provides the ability to determine if your application is in “trial
mode” or not and limit usage accordingly. Microsoft specifically
recommends against limiting trials by time (such as a thirty-
minute trial) and instead suggests limiting features instead20.
Notably there is no in-app purchase mechanism, although it
will be available in Windows Phone 8.

For ad-based monetization, there are several options.
Microsoft has their own Microsoft Advertising Ad Control21
(currently available in 18 countries), while Smaato22, innerac-
tive23, AdDuplex24 and Google25 all offer alternative advertising
solutions. For more general information about monetization,
please the dedicated chapter in this guide.

Resources

Visit dev.windowsphone.com for news, developer tools and
forums.

The development team posts on their blog at windowsteam-
blog26 or their Twitter account @wpdev. For a large collection
of developer and designer resources, visit
windowsphonegeek.com and reddit27.

20 msdn.microsoft.com/en-us/library/ff967558(v=vs.92).aspx#Best_Practices
21 advertising.microsoft.com/mobile-apps
22 smaato.com
23 inner-active.com
24 adduplex.com
25 developers.google.com/mobile-ads-sdk/
26 windowsteamblog.com/windows_phone
27 reddit.com/r/wp7dev

http://msdn.microsoft.com/en-us/library/ff967558(v=vs.92).aspx#Best_Practices
http://advertising.microsoft.com/mobile-apps
http://www.smaato.com/
http://inner-active.com/
http://www.adduplex.com/
http://https://developers.google.com/mobile-ads-sdk/
http://windowsteamblog.com/windows_phone
http://reddit.com/r/wp7dev

81Windows Phone

There are currently several built-in OS controls that are not
included in the Windows Phone SDK, such as context menu,
date picker, and others. Those controls are available as part
of the Silverlight Toolkit for Windows Phone, available at
silverlight.codeplex.com. Other popular Windows Phone projects
include coding4fun.codeplex.com and mvvmlight.codeplex.com.
For inspecting the visual tree, bindings and properties of XAML-
based user interfaces at runtime, XAMLSpy28 is available.

There are several eBooks available for free, for example
Windows Phone Programming in C# (Windows Phone Version
7.5)29 or Silverlight for Windows Phone Toolkit In Depth30.

Windows Phone 8

Microsoft has recently unveiled31 the next version of Windows
Phone, called Windows Phone 8. The next version of Windows
Phone has been re-hauled to share a common core with
Windows 8. Along with these changes comes a new program-
ming paradigm. More details and the initial SDK release should
occur in late summer 201232.

Upgrade Path
Microsoft has revealed that existing Windows Phone 7 apps will
continue to run on Windows Phone 8, but will not be able to
access new features and hardware capabilities.

28 xamlspy.com/
29 blogs.msdn.com/b/uk_faculty_connection/archive/2011/11/23/windows-

phone-free-ebook-amp-demos.aspx
30 windowsphonegeek.com/WPToolkitBook
31 channel9.msdn.com/Events/Windows-Phone/Summit
32 social.msdn.microsoft.com/Forums/en-US/wpdevelop/thread/3b1e975e-

7687-4530-881c-356893f23eb9

http://xamlspy.com/
http://blogs.msdn.com/b/uk_faculty_connection/archive/2011/11/23/windows-phone-free-ebook-amp-demos.aspx
http://blogs.msdn.com/b/uk_faculty_connection/archive/2011/11/23/windows-phone-free-ebook-amp-demos.aspx
http://windowsphonegeek.com/WPToolkitBook
http://channel9.msdn.com/Events/Windows-Phone/Summit
http://social.msdn.microsoft.com/Forums/en-US/wpdevelop/thread/3b1e975e-7687-4530-881c-356893f23eb9
http://social.msdn.microsoft.com/Forums/en-US/wpdevelop/thread/3b1e975e-7687-4530-881c-356893f23eb9

Development
Development in Windows Phone 8 will be done in C# or C++,
using the DirectX API or the WinRT API. Because of this, it
should be very easy to share code between Windows 8 and
Windows Phone 8 apps and games. It has been speculated that
the inclusion of C++ / DirectX as an option will encourage more
games and middleware to be ported to the Windows Phone 8
platform. In fact, Unity33 has already announced support34 for
Windows 8 and Windows Phone 8.

33 unity3d.com/
34 edge-online.com/news/unity-announces-windows-phone-8-support

CREATIVE

MDGG

http://unity3d.com/
http://www.edge-online.com/news/unity-announces-windows-phone-8-support

84Windows 8

Windows 8
Windows 8 is Microsoft’s first OS that runs on tablets and PCs
alike. On PCs, Windows 8 is backwards compatible, meaning
that any Windows 7 compliant apps can run on Windows 8 as
well. In addition, specific Windows 8 apps run on Intel and
ARM based machines alike. Windows 8 apps (formerly Metro
style apps) can be developed in C++, C#/VB.NET or JavaScript.
They are all first class citizens in the ecosystem as all program-
ming languages have equal access to the Windows Runtime
(WinRT) APIs. As PCs are outside of the scope of this guide, we
concentrate on Windows 8 apps. The design language Metro/
Modern UI is discussed in the Windows Phone chapter.

The Artist Formerly Known As Metro

Metro, Modern UI, Windows 8 style - are you confused? So
are we. Apparently one European sales company called Metro
AG was not happy about the name of the design language for
Windows 8, so Microsoft backed down and started to rephrase
Metro. It seems that “Modern UI” is used for developers
whereas “Windows 8 apps” is the term used for consumers.
However, Metro is still being used and since we do not see any
reason how anyone could confuse a sales chain with a design
paradigm, we grumpily stick with Metro.

Prerequisites

To develop Metro style apps you require Visual Studio 12 and
Blend, the Express versions are available for free. You can
install Windows 8 within a virtual machine, side by side with
your existing OS or as your main OS. Having a touch enabled
monitor helps to fine tune the user experience for tablets, but

85Windows 8

Metro style apps and Windows 8 work equally well when using
a mouse.

Technically you also need a developer license, however this
license is automatically acquired and free of charge. Only the
Windows Store account costs money, compare the Distribution
section below.

Developing Metro Style Apps

In this section, read about the basics of developing Windows 8
Metro style apps.

What Language Should I Use?
While you may simply chose the language that matches the
know-how of you or your team, it is worth understanding the
differences in capabilities offered by the various options:

C/C++ C#/VB.NET JavaScript

WinRT yes yes yes

Silverlight/
XAML

yes yes no

HTML no no yes

DirectX yes yes (with
SharpDX)

no

Codesharing Legacy native
Windows Apps,
professional
Xbox, other
platforms, ...

Legacy .NET
Windows Apps,
indie Xbox,
Windows Phone
apps, ...

Websites,
HTML5 apps,
...

86Windows 8

If you want to use DirectX with C#, you can use SharpDX.org
or game libraries based on that like monogame.codeplex.com.
As Windows Phone 8, the rumored Xbox 8 and Windows 8 all
share the same kernel, it will be simpler to share code between
these platforms in the future. The easiest way for that seems to
use shared .NET based libraries between these platforms.

App Parts
Each Metro style app consists of several parts:

 — App tile represents the app on the splash screen and can
show relevant content to the user, even when your app is
not running;

 — Splash screen is optionally shown when you app starts;
 — App bar contains the context relevant actions and com-

mands;
 — Content area displays your app in different view states

such as full screen or snapped, compare the ‘Views and
Form Factors’ section;

 — Charms allow the user to start interactions with the
application, compare the ‘Application Contracts’ section.

The Windows Runtime APIs
The WinRT APIs are documented on msdn1, they contain the
usual suspects like JSON/XML parsing over geolocation, sensors,
media handling and networking APIs. But WinRT has some more
rather interesting concepts, for example:

Windows.Security.Authentication.Live
Windows.Security.Authentication.Web
Windows.Security.Credentials
Windows.ApplicationModel.Contacts

1 msdn.microsoft.com/en-us/library/windows/apps/br211369.aspx

http://sharpdx.org
http://monogame.codeplex.com
http://msdn.microsoft.com/en-us/library/windows/apps/br211369.aspx

87Windows 8

Application Contracts
Windows 8 features charms in each Metro style app that you
can access by sliding in from the right hand side. There are
five charms: search, share, start, devices and settings. By
implementing contracts you can plug into these charms and
share information between apps. Declare contracts in your
Package.appx manifest file, then implement the required
functionality.

There are following contracts2:

 — Search searches for content in your app. You can
optionally provide search suggestions while the user
types. The relevant functionality is found in the
Windows.ApplicationModel.Search namespace.

 — Share provides a way to share data between a source
and target app, by declaring a corresponding contract.
If you want your app to share data, you should make
it available in as many data formats as possible to
increase the number of potential target apps. You can use
standard formats such as text, HTML, images or create
your own formats. The share target app can optionally
return a quicklink that points to the consumed data.
For example, you can share an image with Facebook
or Flickr and get back a link. Relevant classes are in
Windows.ApplicationModel.DataTransfer.
ShareTarget.

 — Play To plays data with connected devices, for example by
streaming a video to your DLNA enabled TV. Start with the
Windows.ApplicationModel.PlayTo namespace.

 — Settings allows the user to adjust context dependent set-
tings from anywhere within your app. Define you settings
with the help of Windows.UI.ApplicationSettings.

2 msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx

88Windows 8

 — App to App Picking allows you to open or save app
files from within another app. Find classes in the
Windows.Storage.Pickers namespace.

Do not duplicate charms functionality elsewhere in your app.
That will just confuse your users. You should, for example, not
include a specific search field, unless searching is the main task
of your app.

Windows 8 has many more extensions and contracts, a full
list is available at msdn.microsoft.com/library/windows/apps/
hh464906.aspx.

Views and Form Factors
Metro style apps can run in different layout modes3:

 — full screen is the default mode, either in landscape or
portrait orientation. Your app will use all the available
screen real estate to immerse the user completely in
ApplicationLayoutState.FullScreen.

 — snapped and filled are modes in which apps are shown
side by side. You should change your layout accord-
ingly but maintain the state of your app and keep at
least the main functions easily acccessible, this applies
to both ApplicationLayoutState.Filled and
ApplicationLayoutState.Snapped.

To get notified about layout changes, listen to the
Windows.UI.ViewManagement.ApplicationLayout.
GetForCurrentView().LayoutChanged event. There
you can even change the state programmatically: When
your app is in snapped mode and your user selects a

3 msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx

http://msdn.microsoft.com/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx

89Windows 8

function that demands a different mode, you can call
ApplicationLayout.TryUnsnap().

Autoscaling
Windows 8 runs on devices with different screen resolutions
and pixel densities. Depending on the resolution Metro style
apps are scaled automatically to:

 — 1366 x 768 (100%)
 — 1920 x 1080 (140%)
 — 2560 x 1440 (180%)

Web developers should use SVG graphics and CSS media
queries, when possible. XAML developers can use naming
schemes for resources, so that the best fitting resource is
chosen automatically (such as image.scale-100.jpg, image.
scale-140.jpg and image-scale-180.jpg). You should also use
resources with dimensions that are multiples of 5px, so that no
pixel shifting occurs when autoscaling.

Push
You can send data and even images to your Metro style apps
using the Windows Notification Service (WNS)4. This also
enables you to update the live-tiles of your app. Using WNS
is free of charge. You can use the Windows Azure Toolkit for
Windows 85 to simplify the implementation of a push server.

4 msdn.microsoft.com/en-us/library/windows/apps/hh465460.aspx
5 watwindows8.codeplex.com

http://msdn.microsoft.com/en-us/library/windows/apps/hh465460.aspx
http://watwindows8.codeplex.com

90PB

Single Sign On
Windows 8 provide user credential management services6 and
using Microsoft Account for its user authentication. You can
leverage this to provide single sign to your apps, enabling you
to identify the user directly without further authentication7.

Distribution

Metro style apps can be distributed through Windows Store8
only. The standard revenue share of 70% is increased to 80%
when your app makes more than 25,000 USD. The Windows
Store will support over 200 countries and regions and more
than 100 languages, so you can have a global reach. You also
can distribute feature- or time-limited trial versions of your
app, use in app purchasing or integrate adverts. Third-party
payment providers are allowed as well.

Apps are managed by customer, not by device. So a user can
use your app across a variety of platforms, such as a desktop PC
and a tablet.

Before you sell apps, you need to obtain a Windows Store
account that costs 49 USD per year for individuals and 99 USD
for companies.

6 msdn.microsoft.com/en-us/library/windows/apps/br211367.aspx
7 msdn.microsoft.com/en-us/library/windows/apps/hh465098.aspx
8 msdn.microsoft.com/en-us/library/windows/apps/hh694084.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/br211367.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465098.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694084.aspx

91

Resources

Your starting point for Windows 8 development is
dev.windows.com.

You can follow the Windows 8 development team on
twitter.com/buildwindows8 and blogs.msdn.com/b/b8/.

Discuss development problems on
social.msdn.microsoft.com/Forums/en-US/category/windowsapps.

Find sample code on code.msdn.microsoft.com/windowsapps,
in various codeplex.com projects and in the end to end samples
available at msdn.microsoft.com/en-us/library/windows/apps/
br211375.aspx. The roadmap for app developers provides
an good overview about planing, designing and developing
Windows 8 apps at
msdn.microsoft.com/library/windows/apps/xaml/br229583.aspx.

http://dev.windows.com
http://twitter.com/buildwindows8
http://blogs.msdn.com/b/b8/
http://social.msdn.microsoft.com/Forums/en-US/category/windowsapps
http://code.msdn.microsoft.com/windowsapps
http://codeplex.com
http://msdn.microsoft.com/en-us/library/windows/apps/br211375.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211375.aspx
http://msdn.microsoft.com/library/windows/apps/xaml/br229583.aspx

93Going Cross-Platform

Going Cross-Platform
So many platforms, so little time: This accurately sums up the
situation that we have in the mobile space. There are more
than enough platforms to choose from: Android, bada, Black-
Berry, Firefox OS, iOS, Tizen, Windows 8, and Windows Phone
are or will likely be among the most important smartphone
and tablet platforms while Brew MP and Java ME dominate on
feature phones (all in alphabetical order).

Before embarking on a mobile apps project one of the key
decisions to make is which platforms to target. In making
this decision – by looking at the market potential and cost
of development for each platform – it is well worth reviewing
the option of a cross platform framework. In considering a
cross-platform approach do not confuse the market size of a
platform with the market potential for your application – while
Android and iPhone appear to have the biggest market places,
you will also need the biggest marketing effort to get noticed.
So concentrating on several seemingly smaller platforms, might
be a smart choice for some apps.

Another challenge is that most application sponsors, to
quote Queen’s famous lyrics, will tell the developer: “I want
it all, I want it all, I want it all ...and I want it now!” So the
choice may be between throwing money at the development
and adopting a cross-platform strategy.

By the way, we are not talking about app stores here; this
is a different market fragmentation problem. The more than
120 app stores, from operators, manufacturers and independent
companies create challenges of their own, outlined in the
“Appstores” chapter.

94Going Cross-Platform

App Development Process

When talking about cross-platform development you should be
aware about the overall app development phases:

1. Planing & specification
2. Prototyping & design
3. Implementation
4. Testing
5. Deployment

Cross-platform development can speed up the implementa-
tion phase, but it does not help with the other phases. On
device testing on all supported platforms and their respec-
tive versions is really crucial for the success of any app, for
example.

Limitations And Challenges Of Cross
Platform Approaches
If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier
to overcome than others:

Native Programming Languages
By now you will have noticed that most mobile platforms
release their own SDKs, which enable you to develop apps in
the platforms’ supported programming languages.

However, these languages tend to belong to one of a few
families of root languages and the following table provides an
overview of these and the platforms they are supported on:

95Going Cross-Platform

Language 1st class citizen1 2nd class citizen2

ActionScript BlackBerry 10, BlackBerry
PlayBook OS (QNX)

none

C, C++ bada, BlackBerry 10,
BlackBerry PlayBook
OS, Brew MP, Symbian,
Windows 8, Windows

Android (partially, using
the NDK), iOS (partially)

C# Windows 8, Windows
Phone and Windows
Mobile

none

Java Android, BlackBerry, Java
ME devices

Symbian, Windows Mobile

JavaScript BlackBerry PlayBook
OS, Firefox OS, Tizen,
Windows 8

BlackBerry (WebWorks),
Nokia (WRT)

Objective-C iOS none

Cross-platform-frameworks can overcome the programming
language barriers in different ways:

 — Web Technologies: This approach exploits the fact that
most platforms provide direct support for web technologies
through embedded ‘webviews’ in native applications. Along
with HTML and CSS, this approach supports JavaScript also.

 — Interpretation: Here the framework delivers an engine
for each platform that interprets a common or framework

1 Supported natively by the platform, for example either the primary or only
language for creating applications

2 Supported natively by the platform, for example either the primary or only
language for creating applications

96Going Cross-Platform

specific language. For example, a popular option for games
development is Lua scripting.

 — Cross Compilation: The holy grail of cross platform frame-
works is cross compilation, but it is also the most complex
technical solution. It enables you to write an app in one
language and have it transcoded into each platform’s
native language, offering native runtime speed.

Most frameworks also provide a set of cross platform APIs
that enable you to access certain platform or device features,
such as a device’s geolocation capabilities, in a common way.
For features such as SMS messaging you can also use network
APIs that are device-independent1.

UI And UX
A difficult hurdle for the cross platform approach is created
by the different User Interface (UI) and User eXperience (UX)
patterns that prevail on individual platforms.

It is relatively easy to create a nice looking UI that works
the same on several platforms. Such an approach, however,
might miss important UI subtleties that are available on a
single platform only and could improve the user experience
drastically. The other challenge with a cross-platform UI is that
it can behave differently to the native UI users are familiar
with, resulting in your application failing to “work” for users.
A simple example is not to support a hardware key such as the
back key on a given platform correctly.

Some platforms also have different design philosophies.
While iOS strives for a realistic design in which apps look like
their real world counterparts, Windows Phone’s Metro interface
strives for an “authentically digital” experience, in which the
content is emphasized not the chrome around it.

1 www.developergarden.com/apis/

http://www.developergarden.com/apis/

97Going Cross-Platform

Customizing and tailoring the UI and UX to each platform
can be a large part of your application development effort and
is arguably the most challenging aspect of a cross platform
strategy.

Desktop Integration
Integration of your application into devices’ desktops varies a
lot between the platforms; on iOS you can only add a badge
with a number to your app’s icon, on Windows Phone you can
create live tiles that add structured information to the desktop,
while on Android and Symbian you can add a full-blown desk-
top widget that may display arbitrary data and use any visuals.
Using desktop integration might improve the interaction with
your users drastically.

Multitasking
Multitasking enables background services and several apps
to run at the same time. Multitasking is another feature that
is realized differently among operating systems. On Android,
BlackBerry and Symbian there are background services and you
can run several apps at the same time; on Android it is not pos-
sible for the user to exit apps as this is handled automatically
by the OS when resources run low. On iOS and Windows Phone
we have a limited selection of background tasks that may
continue to run after the app’s exit. So if background services
can improve your app’s offering, you should evaluate cross
platform strategies carefully to ensure it enables full access to
the phone’s capabilities in this regard.

Battery Consumption And Performance
Closely related to multitasking is the battery usage of your
application.

While CPU power is roughly doubled every two years

98Going Cross-Platform

(Moore’s law says that the number of transistors is doubled
every 18 months), by contrast battery capacity is doubling only
every seven years. This is why smartphones like to spend so
much time on their charger. The closer you are to the platform
in a crossplatform abstraction layer, the better you can control
the battery consumption and performance of your app. As a
rule of thumb, the longer your application needs to runs in one
go, the less abstraction you can afford.

Push Services
Push services are a great way to give the appearance that your
application is alive even when it is not running. In a chat ap-
plication you can, for example, send incoming chat messages to
the user using a push mechanism. The way push services work
and the protocols they use, again, can be realized differently
on each platform. The available data size, for example, ranges
between 256 bytes on iOS and 8kb on BlackBerry. Service
providers such as Urban Airship2 support the delivery across a
variety of platforms.

In App Purchase
In app purchase mechanisms enable you to sell services or
goods from within your app. Needless to say that this works
differently across platforms.

In App Advertisement
There are different options for displaying advertisements within
mobile apps, some are vendor independent third-party solu-
tions.

Platform specific advertisement services, however, offer
better revenues and a better user experience. And again these
vendor services work differently between the platforms.

2 urbanairship.com/

http://urbanairship.com/

99Going Cross-Platform

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

 — Concept and assets: Mostly you will do this automatically:
share the ideas and concepts of the application, the UI
flow, the input and output and the design and design
assets of the app (but be aware of the need to support
platform specific UI constructs).

 — Data structures and algorithms: Go one step further by
sharing data structures and algorithms among platforms.

 — Code sharing of the business model: Using cross platform
compilers you can also share the business model between
the platforms. Alternatively you can use an interpreter or a
virtual machine and one common language across a variety
of platforms.

100Going Cross-Platform

 — Complete abstraction: Some cross platform tools enable
you to completely abstract the business model, view and
control of your application for different platforms.

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Flash, Java ME
and Lua. This approach makes development very easy. You are
dependent, however, on the platform provider for new features
and the challenge here is when those features are available on
one platform only. Often player concepts tend to use a “least
common denominator” approach to the offered features, to
maintain commonality among implementations for various
platforms. Generator concepts carry the player concept a step
further, they are often domain specific and enable you to gener-
ate apps out of given data. They often lack flexibility compared
to programmable solutions.

Cross Language Compilation
Cross language compilation enables coding in one language
that is then transformed into a different, platform specific
language.

In terms of performance this is often the best cross platform
solution, however there might be performance differences when
compared to native apps. This can be the case, for example,
when certain programming constructs cannot be translated
from the source to the target language optimally. There are
three common approaches to cross language compilation:
direct source to source translation, indirectly by translating the
source code into an intermediate abstract language and direct
compilation into a platform’s binary format.

The indirect approach typically produces less readable code.
This is a potential issue when you would like to continue the

development on the target platform and use the translated
source code as a starting point.

(Hybrid) Web Apps
While websites are inherently cross platform, they have some
big disadvantages:

1. Websites are not listed in the app stores, so users do not
find them and monetization is difficult. (Although you
could create a simple application or widget that opens your
website and submit that to a store, but this will not help
with monetization.)

2. Websites only work online (although the increasing avail-
ability of HTML5 is slowly eliminating this disadvantage).

3. Websites have an inferior user experience compared to
native apps.

102Going Cross-Platform

Some of the available web application frameworks are listed
in the following table. With these frameworks you can create
web apps that behave almost like real apps, including offline
capabilities.

Web App Solution License Target Platforms

jQuery Mobile
www.jquerymobile.com

MIT and GPL Android, bada,
BlackBerry, iOS,
Symbian, webOS,
Windows Phone

JQTouch
www.jqtouch.com

MIT iOS

iWebKit
iwebkit.net

LGPL iOS

iUI
code.google.com/p/iui

BSD iOS

Sencha Touch
www.sencha.com/products/
touch

GPL Android, iOS

The M Project
the-m-project.org

MIT and GPL Android, BlackBerry,
iOS, webOS

Typically you have no access to hardware features and native UI
elements, so in our opinion they do not count as “real” cross
platform solutions: these solutions are therefore not listed
in the table at the end of this chapter. Web apps have some
advantages over traditional websites:

1. You can put a web app in an app store. Even when not
directly supported by the vendor, you can use web based
tools such as PhoneGap in combination with a web app
solution to make web apps available in app stores.

2. Web apps can work offline.

http://www.jquerymobile.com
http://www.jqtouch.com
http://iwebkit.net
http://code.google.com/p/iui
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://the-m-project.org

103Going Cross-Platform

3. Web apps can look and behave in a similar fashion to na-
tive apps, however there are often slight – albeit annoying
– differences compared with their native counterparts.

A step further towards native applications is provided by
hybrid web apps, in which you create a native application that
uses a webview to display a website.

With this approach you can have access to any native
functionality that you require while keeping most of the
functionality on the server side.

This approach is easier than creating native apps for every
platform while enabling you to extend the native parts of your
app as required in an incremental fashion.

Cross-Platform App Frameworks

There are many cross-platform solutions available, so it is hard
to provide a complete overview. You may call this fragmenta-
tion, I call it competition. A word of warning: we do not know
about all solutions here, if you happen to have a solution on
your own that is publicly available, please let us know about
it at developers@enough.de. A framework needs to support at
least two mobile platforms to be listed.

Here are some questions that you should ask when evaluat-
ing cross platform tools. Not all of them might be relevant to
you, so weight the answers appropriately. First have a detailed
look at your application idea, the content, your target audience
and target platforms. You should also take the competition on
the various platforms, your marketing budget and the know-how
of your development team into account.

 — How does your cross platform tool chain work? What
programming language and what API can I use?

104Going Cross-Platform

 — Can I access platform specific functionality? If so, how?
 — Can I use native UI components? If so, how?
 — Can I use a platform specific build as the basis for my own

ongoing development? What does the translated/generated
source code look like?

 — Is there desktop integration available?
 — Can I control multitasking? Are there background services?
 — How does the solution work with push services?
 — How can I use in app purchasing and in app advertise-

ment?

Solution License Input Output

Application Craft
applicationcraft.com

Commercial HTML, CSS,
JavaScript

Android,
BlackBerry,
iOS, Symbian,
Windows Phone,
mobile sites

appMobi
appmobi.com

Commercial HTML, CSS,
JavaScript

Android, iOS,
Kindle Fire,
Nook, web

Codename One
codenameone.com

Commercial Java Android,
BlackBerry, iOS,
J2ME, Windows
Phone

Corona
coronalabs.com
(Corona Labs)

Commercial JavaScript Android, iOS

J2ME Polish
j2mepolish.org
(Enough Software)

Open Source +
Commercial

Java ME,
HTML, CSS

Android,
BlackBerry,
J2ME, PC

http://www.applicationcraft.com
http://www.appmobi.com
http://www.codenameone.com
http://www.coronalabs.com
http://www.j2mepolish.org

105Going Cross-Platform

Solution License Input Output

Flash Builder
adobe.com/devnet/
devices.html (Adobe)

Commercial Flash Android, Black-
Berry Playbook
OS, iOS, PC

Feedhenry
feedhenry.com

Commercial HTML, CSS,
JavaScript

Android,
BlackBerry, iOS,
Windows Phone

Kirin/JS
kirinjs.org/

Open Source JavaScript Android, iOS

Kony One
kony.com/node/4

Commercial HTML, CSS,
JavaScript,
RSS

Android,
BlackBerry, iOS,
J2ME, Symbian,
Windows Phone

LiveCode
runrev.com (RunRev)

Commercial English-like Android, iOS, PC
and Web

MobiForms
www.mobiforms.com
(MobiForms)

Commercial Drag and
Drop +
MobiScript

Android, iOS,
PC, Windows
Mobile

Mono for Android
xamarin.com/
monoforandroid
(Xamarin)

Commercial C# Android (share
code with iOS
and Windows
Phone)

Mono Touch
xamarin.com/
monotouch (Xamarin)

Commercial C# iOS (share code
with Android
and Windows
Phone)

http://adobe.com/devnet/devices.html
http://adobe.com/devnet/devices.html
http://feedhenry.com
http://www.kirinjs.org
http://kony.com/node/4
http://www.runrev.com/products/livecode
http://www.mobiforms.com
http://xamarin.com/monoforandroid
http://xamarin.com/monoforandroid
http://xamarin.com/monotouch
http://xamarin.com/monotouch

Solution License Input Output

MoSync
mosync.com

Open Source +
Commercial

C/C++,
HTML5/JS

Android,
BlackBerry, iOS,
J2ME, Symbian,
Windows Phone
7, Windows
Mobile

NeoMAD
neomades.com

Commercial Java Android, bada,
BlackBerry, iOS,
J2ME, Symbian,
Windows Phone
7

PhoneGap/
Cordova
www.phonegap.com
(Adobe/Apache)

Open Source HTML, CSS ,
JavaScript

Android,
BlackBerry,
iOS, Symbian,
Windows Phone

Qt
qt.nokia.com
(Nokia)

Open Source +
Commercial

C++ PC, Sym-
bian, MeeGo
and Windows
Mobile, desktop
Windows, Apple
& Linux OS

Rhodes
rhomobile.com/
products/rhodes
(Motorola)

Open Source +
Commercial

Ruby,
HTML, CSS,
JavaScript

Android,
BlackBerry,
iOS, Symbian,
Windows Mobile,
Windows Phone

Spot Specific
www.spotspecific.com

Commercial Drag and
Drop,
JavaScript

Android, iOS

Titanium
www.appcelerator.com

Open Source JavaScript Android,
Consoles, iOS,
PC

http://www.mosync.com
http://neomades.com
http://www.phonegap.com
http://qt.nokia.com
http://rhomobile.com/products/rhodes
http://rhomobile.com/products/rhodes
http://www.spotspecific.com
http://www.appcelerator.com

107Going Cross-Platform

Solution License Input Output

Verivo
verivo.com

Commercial (Visual) Android,
BlackBerry, iOS

webMethods
MobileDesigner
(formerly Me-
tismo Bedrock)
www.metismo.com
(Software AG)

Commercial Java ME Android, bada,
BlackBerry,
brew, Consoles,
iOS, PC,
Windows Phone,
Windows Mobile

XML VM
xmlvm.org

Open Source +
Commercial

Java, .NET,
Ruby

C++, Java,
JavaScript, .NET,
Objective-C,
Python

When you target end consumers directly (B2C), you often
need to take platform specific user experience much more into
account than in cases when you target business users (B2B).

http://verivo.com/
http://www.metismo.com
http://xmlvm.org

108Going Cross-Platform

Cross-Platform Game Engines

Games are very much content centric and often do not need to
integrate deeply into the platform. So cross-platform develop-
ment is often more attractive for games than for apps.

Solution License Input Output

Corona
cocos2d-x.org

Open Source C++, HTML5,
JavaScript

Android,
iOS

Corona
coronalabs.com
(Corona Labs)

Commercial JavaScript Android,
iOS

EDGELIB
www.edgelib.com
(elements interactive)

Commercial C++ Android,
iOS, PC,
Symbian

Esenthel
esenthel.com
(elements interactive)

Commercial C++ Android,
iOS, PC

GameSalad
gamesalad.com

Commercial Drag and drop Android,
iOS, PC,
web

id Tech 5
www.idsoftware.com
(id)

Commercial C++ Consoles,
iOS, PC

Irrlicht
irrlicht.sourceforge.net

Open Source C++ Android &
iOS with
OpenGL-ES
version, PC

IwGame
drmop.com/index.php/
iwgame-engine

Open Source C++ Android,
bada,
BlackBerry
Playbook
OS, iOS, PC

http://www.cocos2d-x.org
http://www.coronalabs.com
http://www.edgelib.com
http://esenthel.com
http://gamesalad.com
http://www.idsoftware.com
http://irrlicht.sourceforge.net
http://www.drmop.com/index.php/iwgame-engine
http://www.drmop.com/index.php/iwgame-engine

Solution License Input Output

orx
orx-projet.org

Open Source C, C++,
Objective-C

Android,
iOS, PC

Marmelade
madewithmarmalade.com
(Ideaworks3D)

Commercial C++, HTML5,
JavaScript

Android,
bada,
BlackBerry
PlayBook
OS, iOS, LG
Smart TV

Moai
getmoai.com
(Zipline Games)

Commercial Lua Android,
iOS, PC,
Web

MonoGame
monogame.codeplex.com

Open Source C#, XNA Android,
iOS, PC,
Windows 8

SIO2
sio2interactive.com
(sio2interactive)

Commercial C, Lua Android,
bada, iOS,
PC

Unigine
www.unigine.com
(Unigine corp.)

Commercial C++, Unigine-
Script

Android,
iOS, PC,
PS3

Unity3
unity3d.com
(Unity Technologies)

Commercial C#, JavaScript,
Boo

Android,
iOS, PC,
consoles,
web

http://orx-projet.org
http://www.madewithmarmalade.com
http://getmoai.com
http://monogame.codeplex.com
http://sio2interactive.com
http://unity3d.com

111Web Technologies

Web Technologies
One big advantage of web technologies is that they offer the
easiest route into mobile development. For a web developer
mobile is simply the web ;) Equally, for anyone taking the first
steps into mobile development – or first steps into program-
ming – HTML, CSS and the JavaScript language are a lot easier
to learn than relatively complex native languages.

This article does not teach you how to create websites.
There are a lot of fantastic resources on the web:

 — HTM5Rocks.com1

 — Mozilla.org2

This may come as a surprise, but there is no mobile web.
There in only one web3. What is unique about The Web is that
it enables everyone to access information and services from
anywhere on any device, Long Live the Web4!

Simply enter a URL in any browser and off you go. Websites
that have been around for many moons are still compatible and
accessible with the latest browsers. In comparison, it is pretty
much impossible to find native applications that (without
alterations) manage to run for a number of years on any
modern operating system.

The web is accessible for everyone on any browser/device,
but people are different5 and browsers are different, too.
Diversity6 is great and illustrates evolution. Unfortunately it is

1 www.html5rocks.com/en/
2 developer.mozilla.org/en-US/learn/html
3 www.the-haystack.com/2011/01/07/there-is-no-mobile-web/
4 www.scientificamerican.com/article.cfm?id=long-live-the-web
5 www.thinkwithgoogle.com/mobileplanet
6 html5test.com/results-mobile.html

http://www.html5rocks.com/en/
http://https://developer.mozilla.org/en-US/learn/html
http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/
http://www.scientificamerican.com/article.cfm?id=long-live-the-web
http://www.thinkwithgoogle.com/mobileplanet
http://html5test.com/results-mobile.html

112Web Technologies

not always that easy to create a cross-device, cross-platform,
cross-browser, cross-markup, "cross-blahblah" mobile website.
Dealing with many different devices also creates an annoying
fragmentation jungle. Some devices use their own implementa-
tion of device APIs (such as MSIE 6 or Blackberry OS 4.6), or
simply cannot support certain features. As a rule of thumb,
when developing on the mobile or multi-device web expect the
unexpected7.

Why create a website instead of an application? My brain
hurts8. The entire App vs. Web discussion is bullshit9. Both
technologies are fundamentally different. "Apps are like
Songs"10 and “Cool URIs don't change“11. Both technologies
coexist and, taking the desktop PC as an example, have done
so for years. One advantage of a website is that it runs on any
device. Just type or share the URL. If you want to be native,
be native. Native is not bad, native means being closer to the
device, the OS and ultimately closer to the user. But at the
same time native excludes universality.

Usability

Content should come first12. Do not think about features. Think
about functions and how to access and interact best with your
content. If your content/service is not interesting, why should
anyone use it?

Less is more. If you do not create it for mobile – why on a
desktop?

7 futurefriend.ly/
8 www.youtube.com/watch?v=IIlKiRPSNGA
9 bradfrostweb.com/blog/notes/native-vs-web-is-total-bullshit/
10 torgo.com/blog/2009/06/apps-are-like-songs.html
11 w3.org/Provider/Style/URI
12 lukew.com/ff/entry.asp?1598

http://futurefriend.ly/
http://www.youtube.com/watch?v=IIlKiRPSNGA
http://bradfrostweb.com/blog/notes/native-vs-web-is-total-bullshit/
http://www.torgo.com/blog/2009/06/apps-are-like-songs.html
http://www.w3.org/Provider/Style/URI
http://www.lukew.com/ff/entry.asp?1598

113Web Technologies

Performance

Performance is not optional13. But how do you speed up your
pages? „80-90% of the end-user response time is spend on the
front-end.“14 Especially your front-end can waste crucial time.

 — Loading unnecessary resources15

 — Using JavaScript Frameworks – give VaporJS16 a try ;)
 — Complex CSS rendering

HTML5

Oh wait, isn't there HTML517!? HTML5 has been hyped up to
be the ultimate tool18, the holy grail, or the solution to pretty
much anything. We are not saying HTML5 is bad, but the hype
is getting on our nerves19. It is important to factor in that the
web is not just evolving on devices, but in accordance with
technology and standards. There are organizations safeguarding
HTML, such as the WHATWG20 and W3C21. What is referred to as
HTML5 by W3C is a part of HTML’s living standards22 as outlined
by WHATWG. As with any collaboration, it is not always easy
for two organizations to work together23. As an observer of

13 velocityconf.com/velocity2009/public/schedule/detail/7709
14 stevesouders.com/blog/2012/02/10/the-performance-golden-rule/
15 guypo.com/mobile/performance-implications-of-responsive-design-book-

contribution/
16 vaporjs.com/
17 w3.org/TR/html5/
18 brucelawson.co.uk/2011/html5-notes-for-analysts-and-journalists/
19 slideshare.net/sevenval/why-html5-is-getting-on-my-nerves
20 whatwg.org
21 w3c.org
22 blog.whatwg.org/html-is-the-new-html5
23 zeldman.com/2012/07/24/whtmlyaduck/

http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://www.guypo.com/mobile/performance-implications-of-responsive-design-book-contribution/
http://vaporjs.com/
http://www.w3.org/TR/html5/
http://www.brucelawson.co.uk/2011/html5-notes-for-analysts-and-journalists/
http://www.slideshare.net/sevenval/why-html5-is-getting-on-my-nerves
http://whatwg.org
http://w3c.org
http://blog.whatwg.org/html-is-the-new-html5
http://www.zeldman.com/2012/07/24/whtmlyaduck/

Web Technologies

standards, the best quote to describe standards comes from
Andrew S. Tanenbaum: "The nice thing about standards is that
you have so many to choose from."24.

WebApps

Do you still create lame web sites or new fancy HTML5
WebApps? Where is the difference? When we use the term
WebApp, we are not referring to a traditional Web Applica-
tion25, but a JavaScript application that is running client
side. There are numerous frameworks readily available to do
so. One of the most famous is Sencha Touch26. Even though
web technologies are used, WebApps should not be described
as websites27. The web is full of myths28 about HTML5 and
WebApps are no exceptions. A WebApp does not have access
to exclusive APIs (i.e. camera, offline mode). Websites and
WebApps use the same browser, but make use of different
concepts.

If you prefer to move the complexity from your
(dumb) server to the smart browser, go for it.
But be aware: The browser is the known
unknown and harder to control.
The server is yours, the browser is
unknown.

24 en.wikiquote.org/wiki/Andrew_S._Tanenbaum
25 en.wikipedia.org/wiki/Web_application
26 sencha.com/products/touch/
27 w3cubes.com/blog/2011/10/26/anatomy-of-a-html5-mobile-application/
28 www.readwriteweb.com/mobile/2011/08/html5-can-get-the-job-but-can.php

http://en.wikiquote.org/wiki/Andrew_S._Tanenbaum
http://en.wikipedia.org/wiki/Web_application
http://www.sencha.com/products/touch/
http://w3cubes.com/blog/2011/10/26/anatomy-of-a-html5-mobile-application/
http://www.readwriteweb.com/mobile/2011/08/html5-can-get-the-job-but-can.php

115Web Technologies

Adaptation

A web resource displayed as a URL is first and foremost a
message (document) to all people. To understand that message
every language needs a universal translation to be understood
by different target groups, age groups and cultures. Web tech-
nologies achieve this thanks to browsers, standards, devices
(CPUs), images, videos... How to translate your message/docu-
ment? There are different approaches:

Device & Browser Detection
Device and browser detection violates a universal or future-
friendly approach. Nevertheless, if you want to finish a project,
or adapt an aspect for a specific case that only affects the
device/ browser, then that is the exception of the rule.

In most instances this is managed by the User-Agent.
Example29:

Client Side (JavaScript):

if((navigator.userAgent.match(/iPhone/i)) ||
(navigator.userAgent.match(/iPod/i))) {
}

Server Side (PHP):

if(strstr($_SERVER|| strstr($_SERVER[‘HTTP_USER_
AGENT’,'iPod')) {
}

29 davidwalsh.name/detect-iphone

http://'HTTP_USER_AGENT'],'iPhone')
http://'HTTP_USER_AGENT'],'iPhone')
http://davidwalsh.name/detect-iphone

116Web Technologies

Feature Detection
Feature Detection is always device neutral, universal and
future-friendly. The Modernizr30 JavaScript library is a good op-
tion for client-side feature detection. But sometimes browsers
lie and aspects are undetectable31. Detector32 is a solution for
server-side feature detection.

Client Side Adaptation
Client side adaptation is a process whereby adaptations to the
device/browser are handled within the browser. Options include
Media Queries33, Feature Detection or User-Agent sniffing with
JavaScript. Client side adaptation includes device specific adap-
tations. Based on this philosophy, no infrastructure adaptations
such as additional server components are needed. The client
(browser) handles (required) adaptations. This approach is not
necessarily better or worse - why not form your own conclu-
sions after evaluating it?

With responsive design34 you can create a layout that can
adapt to conditions using one URL. In many cases, this includes
handling of screen size (width/height) and alignment. This is
done with Media Queries35 and fluid layout and flexible images.

Progressive Enhancement36 makes use of Client-Side
Feature Detection. Generally speaking, this involves the use of
JavaScript to detect whether a certain capability is supported
on a device. Client side feature detection generally involves
the use of JavaScript to detect whether a certain capability
is supported on a device. The foundation is plainHTML and is

30 modernizr.com/
31 github.com/Modernizr/Modernizr/wiki/Undetectables
32 detector.dmolsen.com/
33 w3.org/TR/css3-mediaqueries/
34 alistapart.com/articles/responsive-web-design/
35 w3.org/TR/css3-mediaqueries/
36 accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/

http://modernizr.com/
http://https://github.com/Modernizr/Modernizr/wiki/Undetectables
http://detector.dmolsen.com/
http://www.w3.org/TR/css3-mediaqueries/
http://www.alistapart.com/articles/responsive-web-design/
http://www.w3.org/TR/css3-mediaqueries/
http://accessites.org/site/2007/02/graceful-degradation-progressive-enhancement/

117Web Technologies

supported by any browser. Features that need to be detected
are optional. A well-known framework that makes use of this
approach is jQuery Mobile37.

Server Side Adaptation
Server Side Adaptation is a process in which the server performs
something specific for the Client. Server Side Technologies are
often coupled with user agent sniffing, but to actively manage
a piece of <noscript>...</noscript> tag, or the transfer
and handling of features submitted Client Side via JavaScript is
Server Side Adaption.

 — Device Templates: The example38 illustrates that Server
Side Adaptation works best when (multiple) tailored
templates are developed and its selection is handles by the
user agent. Accordingly, you could create the latest feature
version to serve the iPhone, but serve a generic version
to every other device. Sadly it is not as easy as it sounds.
For example the firmware of the phone also comes with a
multitude of features. A clear and preferred differentiation
between feature phones and smartphone is therefore
problematic.

 — Device Detection: Server Side Device Detection39 is the
most popular approach to perform adaptations. The big
challenge with this approach is the rate at which new
devices are released, making it hard to keep a device
database up to date. There are device databases (such as
WURFL40 or DeviceAtlas41). These services are well worth

37 jquerymobile.com/
38 davidwalsh.name/detect-iphone
39 mobiforge.com/designing/blog/server-side-device-detection-used-82-alexa-

top-100-sites
40 wurfl.sourceforge.net
41 deviceatlas.com

http://jquerymobile.com/
http://davidwalsh.name/detect-iphone
http://mobiforge.com/designing/blog/server-side-device-detection-used-82-alexa-top-100-sites
http://mobiforge.com/designing/blog/server-side-device-detection-used-82-alexa-top-100-sites
http://wurfl.sourceforge.net
http://www.deviceatlas.com

Web Technologies

considering, as they have full time employees (or a com-
munity) actively maintaining their databases and do a lot
of work that would be impractical for you to do.

Client & Server Side Adaptation
Another approach is to combine responsive design + server
side components42. To create a mix of server & client side and
feature & device detection has been cited as the evolution of
responsive web design43. The clear advantage is that everything
that a server has already adapted for a specific client is easier
for the client to handle.

These evolutions of responsive web design are available as
commercial solutions (e.g. Sevenval44) or cloud solutions45
backed by a community.

Summary
Deciding between multi-device adaptation and optimization46
need to be decided dependent on a number of factors. Universal
feature detection addresses the future, but in every day life
specific hacks are needed to address browsers/devices.

Technical Limits of Web Technologies

Browser’s technical limitations are changing47. Take for example
the previous issue of this guide itself. It stated that access to
the camera from within the browser is impossible. And now the
impossible is already possible thanks to a number of modern

42 netmagazine.com/tutorials/getting-started-ress
43 slideshare.net/dmolsenwvu/ress-an-evolution-of-responsive-web-design
44 sevenval.com
45 fitml.com
46 lukew.com/ff/entry.asp?1562
47 w3.org/2009/dap/#roadmap

http://www.netmagazine.com/tutorials/getting-started-ress
http://www.slideshare.net/dmolsenwvu/ress-an-evolution-of-responsive-web-design
http://www.sevenval.com
http://fitml.com
http://www.lukew.com/ff/entry.asp?1562
http://www.w3.org/2009/dap/#roadmap

119Web Technologies

browsers. To stay ahead of the game, have a look at compat-
ibility tables48.

HTML without Browsers

Many more recent SDKs use web technologies outside of the
browser to enable developers faster entry routes. Other pack-
ages, feature detection/ adaptation solutions, or new APIs do
not stop at browser level.

Hybrid Apps
The best of two worlds – or the worst? These solutions use web
and native technologies. The challenge is to ensure that you
combine the unique capabilities of the web with a native single
platform in a way that creates synergy. That way you truly get
the best of both worlds. If you want (or need) to publish your
mobile app in an app store, you can create a hybrid app. This
approach enables you to create your app with common web
technologies (HTML, CSS, JavaScript) to compile everything
within a native app. There are several hybrid app frameworks49
that will help to make your life easier. For example, a single
HTML5 web app codebase reduces your development and
maintenance costs. These frameworks work by creating a native
platform wrapper app that embeds your web app in a web view.
They may also provide some platform features you cannot use
in the browser – such as vibration, access to the camera, or
the address book. It is important to note though that they are
rarely as comprehensive as the features for native apps. And
you still have to develop your own UI, which probably turns
out to be slower than a native one.

48 caniuse.com/
49 See the cross-platform chapter for a comprehensive list

http://caniuse.com/
http://See

120Web Technologies

Note: A large number of platforms use different options to
render embedded web views or the real browser.

Widgets
Widgets are created using the scripting and mark-up languages
used for websites (HTML, CSS, JavaScript) and bundle this web
content into a zip archive that is installed on a device and runs
just like any other application.

Widgets, just like websites, are created entirely in plain text.
These text files are then packaged as a zip archive. This makes
it possible to create widgets using a text editor, zip applica-
tion, and a graphics application (to create an icon and graphics
for the widget). If you already have a web development tool
then use it for widget development. The primary advantage of a
web editor is the support these tools provide to compose HTML,
CSS and JavaScript. There are a number of tools specifically
designed to develop widgets. These may be delivered as
plug-ins or add-ons to web authoring tools. Have a look at
the BlackBerry Widget SDK50, which works in conjunction with
Adobe Air, or standalone tools such as Nokia Web Tools51. These
tools generally provide project templates, a preview environ-
ment, validation, packaging, and deployment features.

50 us.blackberry.com/developers/browserdev/widgetsdk.jsp
51 forum.nokia.com/Develop/Web/Tools#NWT

http://us.blackberry.com/developers/browserdev/widgetsdk.jsp
http://www.forum.nokia.com/Develop/Web/Tools#NWT

121Web Technologies

If there is a challenge in creating widgets, it is the lack of
universal support for a common standard. W3C, together with
Wholesale Application Community (WAC) and Joint Innovation
Lab (JIL), is pushing forward with the definition of standards.
This standardization is still underway and information on its
progress can be found in the W3C Wiki52. Since standards
are not complete, it is important to note that each widget
technology has slightly different ways to implement the draft
specifications and not all environments implement all of the
draft standards. In general, a widget that follows the specifica-
tions given by W3C will enable you to target these widget
environments:

 — BlackBerry (v5.0 or later)53

 — Nokia WRT (on selected S60 3rd Edition, Feature Pack 2
devices and all S60 5th Edition and Symbian^3 devices)54

 — Nokia Browser for Series 40 (selected Nokia Series 40
devices)55

 — Vodafone36056

 — WAC/ JIL:57

 — Windows Mobile (v6.5)58

52 w3.org/2008/webapps/wiki/WidgetSpecs
53 bit.ly/blackberry-widgets
54 bit.ly/nokia-wrt
55 forum.nokia.com/webapps
56 bit.ly/vf-widgets
57 jil.org
58 bit.ly/winmo-widgets

http://www.w3.org/2008/webapps/wiki/WidgetSpecs
http://bit.ly/blackberry-widgets
http://bit.ly/nokia-wrt
http://www.forum.nokia.com/webapps
http://bit.ly/vf-widgets
http://www.jil.org
http://bit.ly/winmo-widgets

Distribution via a website is not the only option. Many applica-
tion stores welcome widgets. At this point in time, the only
store that supports W3C widgets is the Vodafone Widget store59,
but by packaging your widgets appropriately you can upload
them into Nokia Store60, the Windows Marketplace61, or RIM
BlackBerry AppWorld62.

Test & Debugging

Firstly, create a test plan to assess how a WebApp actually be-
haves on a device. Decide what is needed to truly develop, test
and debug. Should I buy all devices, or rent them63? Decide on
the browsers you want your app to run in. Based on the type of
implementation, it is crucial to test the features and browser
detection that influence the behavior of the app. You can use
emulators64. But be warned, emulators do not provide accurate
information in terms of loading and rendering performance.
Remote Debugging65 can be performed using multiple tools.

59 widget.vodafone.com
60 store.ovi.com
61 windowsmarketplace.com
62 appworld.blackberry.com/webstore
63 keynotedeviceanywhere.com/
64 mobiforge.com/testing/story/a-guide-mobile-emulators
65 slideshare.net/klick_ass/mobile-web-testing-debugging-best-practices

http://widget.vodafone.com
http://store.ovi.com
http://www.windowsmarketplace.com
http://appworld.blackberry.com/webstore
http://www.keynotedeviceanywhere.com/
http://mobiforge.com/testing/story/a-guide-mobile-emulators
http://www.slideshare.net/klick_ass/mobile-web-testing-debugging-best-practices

123Web Technologies

Summary

The gap between native apps and web apps is rapidly decreas-
ing. Browser vendors have done a great job rolling out new
features. Creating mobile websites or mobile web apps makes
your content accessible on almost any platform with much
less effort than native development for several platforms. This
does not only save initial development time and cost, but
also reduces time and cost of future maintenance. Hybrid app
frameworks can publish your apps in app stores. However, you
still need to intelligently optimize content, because of the
wide variety of browsers used on mobile devices. Deciding on
a combined approach of server- and client-side optimization
could be seen as the best option. While web apps are getting
closer to native app capabilities, you need to create your own
UI – but look out for templates that help simplify this task.

Some takeaways:

 — Diversity is great
 — The world is imperfect
 — The Web is alive
 — Browser/Device fragmentation is reality
 — Web is not print
 — Every screen/device and browser is different
 — Content & Service should come first
 — Add JavaScript & CSS
 — Setup your project general
 — Add the Special iPhone OMG Stuff – browser/device

adaptations
 — Speed displays the quality of your website
 — Content preparation on the server side is much more

comfortable for your clients

125Accessibility

Accessibility
Regardless of the technology you choose to develop your apps,
you will want to ensure that your app can be used by as many
people in as many different markets as possible.

Many of your potential users may have a disability which
makes it more difficult for them to use mobile technology.
These disabilities include, but are not limited to, various levels
of sight or hearing impairment, Cognitive disabilities, dexterity
issues, technophobia and such like. Many of these users rely
on third-party applications such as TalkBack on the Android
platform or Talks from Nuance for the Symbian platform, which
provides screen reading and screen magnification features. iOS
now includes VoiceOver1 which is the front-runner in terms of
providing an accessible interface on mobile phones.

To make your software accessible for users with disabilities,
you should follow some general guidelines. If you stick to
them, you will also give your app the best chance of interoper-
ating with any third-party access software that the user may be
running in conjunction with your software:

 — Find out what accessibility features and APIs your platform
has and follow best practice in leveraging those APIs if
they exist.

 — Use standard rather than custom UI elements where
possible. This will ensure that if your platform has an ac-
cessibility infrastructure or acquires one in the future, your
app is likely to be rendered accessibly to your users

 — Follow the standard UI guidelines on your platform. This
enhances consistency and may mean a more accessible
design by default

1 www.apple.com/accessibility/iphone/vision.html

http://www.apple.com/accessibility/iphone/vision.html

126Accessibility

 — Label all images with a short description of what the image
is, such as “Play” for a play button.

 — Avoid using colour as the only means of differentiating an
action. For example a colour-blind user will not be able to
identify errors if they are asked to correct the fields which
are highlighted in red.

 — Ensure good colour contrast throughout your app.
 — Use the Accessibility API for your platform, if there is one.

This will enable you to make custom UI elements more
accessible and will mean less work on your part across your
whole app.

 — Support programmatic navigation of your UI. This will not
only enable your apps to be used with an external keyboard
but will enhance the accessibility of your app on platforms
such as Android where navigation may be performed by a
trackball or virtual d-pad.

 — Test your app on the target device with assistive technol-
ogy such as VoiceOver on the iPhone.

You can find a more comprehensive list of guidelines online2.
Some of the mobile platforms have built-in accessibility

features that can help make it easier for people to use your
apps.

In addition to accessibility features for users, some of the
platforms include Accessibility APIs that help developers in two
ways. Firstly, they can enable your app to be accessible with
little or sometimes no extra work on your part. Secondly, they
make it easier to develop assistive apps such as screen readers.

2 www.slideshare.net/berryaccess/designing-accessible-usable-application-
user-interfaces-for-mobile-phones

http://www.slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones
http://www.slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones

Developing Accessible Android Apps

The latest version of Android, Jelly Bean, brings a raft of ac-
cessibility improvements, these include the accessibility focus,
Braille support and more. The developer documentation has
also been enhanced. However, To maximise the reach of your
app to those using previous versions of Android, you should use
standard UI controls where possible and make sure users can
navigate your app via a trackball or D-pad. This will give your
app the best chance of being rendered accessibly by the likes of
Talkback and other assistive technology applications.

For specifics on how to use the Android accessibility API
along with details of best practice in Android accessibility,
please see Google’s document entitled Making Applications
Accessible3.

You will also find more examples in the training area of the
developer documentation in a section entitled Implementing
Accessibility4.

For more information about Android accessibility including
how to use the text to speech API, see the Eyes-Free project5.

3 developer.android.com/guide/topics/ui/accessibility/apps.html
4 developer.android.com/training/accessibility/index.html
5 code.google.com/p/eyes-free

http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/training/accessibility/index.html
http://code.google.com/p/eyes-free

128Accessibility

Developing Accessible BlackBerry Apps

BlackBerry also provides good and extensive information about
the use of their accessibility API and many hints on accessible
UI design on their website for developers6.

In May 2012 Blackberry Released BlackBerry Screen Reader7
for the BlackBerry® Curve™ 9350, 9360 and 9370 smartphones.
This is available as a free download which you may wish to use
in the testing of the accessibility of your apps.

Developing Accessible iOS Apps

iOS has good support for accessibility. For example, iOS devices
include:

 — VoiceOver a screen reader. It speaks the objects and text
on screen, enabling your app to be used by people who
may not be able to see the screen clearly

 — Zoom This magnifies the entire contents of the screen
 — White on Black This inverts the colors on the display,

which helps many people who need the contrast of black
and white but find a white background emits too much
light

 — Captioning and subtitles for people with hearing loss
 — Audible, visible and vibrating alerts to enable people to

choose what works best for them
 — Voice Control and Siri This enables users to make phone

calls and operate various other features of their phone by
using voice commands.

6 https://developer.blackberry.com/java/documentation/intro_
accessibility_1984611_11.html

7 www.blackberry.com/screenreader

http://https://developer.blackberry.com/java/documentation/intro_accessibility_1984611_11.html
http://https://developer.blackberry.com/java/documentation/intro_accessibility_1984611_11.html
http://www.blackberry.com/screenreader

129Accessibility

If you are working on iOS, make sure to follow Apple’s
accessibility guidelines8. These guidelines detail the API and
provide an excellent source of hints and tips for maximising the
user experience with your apps.

Developing Accessible Symbian / Qt Apps

At the time of writing, there is no “accessibility API” for the
Symbian platform, however there are several third party apps
that provide good access to many Symbian phones along with
many of the apps they use.

When developing native Symbian apps your best chance of
developing an accessible app is to use the standard UI controls
where possible. If you are developing using Qt, then please
check the web for details of their accessibility API9.

Developing Accessible Windows Phone &
Windows 8 Apps
As with the other major mobile platforms, the accessibility
features of Windows Phone are being enhanced with every
successive release. Though, at the time of writing, Windows
Phone 8 has not yet been fullly unveiled.

You essentially have two choices when writing apps for the
platform.

If your app is written in C# C++ or Visual Basic, you will find
comprehensive information on making your app accessible in
the document Accessibility in Metro style apps using C++, C#,
or Visual Basic10.

8 developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/
iPhoneAccessibility

9 doc.qt.nokia.com/qq/qq24-accessibility.html
10 msdn.microsoft.com/en-us/library/windows/apps/xaml/hh452680.aspx

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://doc.qt.nokia.com/qq/qq24-accessibility.html
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh452680.aspx

130Accessibility

If you have chosen to use HTML 5 and JavaScript, then you
will need Accessibility in Metro style apps using JavaScript11.

Once you have tested the accessibility of your app12,
Microsoft uniquely allow you to declare your app as accessible13
in the Windows store, allowing it to be discovered by those
who who are filtering for accessibility in their searches.

Developing Accessible Mobile Web Apps

Much has been written on the subject of web accessibility,
however, at the time of writing, there is no standard which
embodies best practice for accessible mobile web development.

If your app is intended to mimic a native app look and feel,
then you should follow the above guidelines in this chapter.

If you are a web content developer, then you should take
a look at the Web Content Accessibility Guidelines (WCAG)
Overview14.

As support of HTML 5 is increasingly adopted on the various
mobile platforms, you might find it useful to take a look at the
document entitled Mobile Web Application Best Practices15 as
this is likely to form the foundation of any mobile web applica-
tion accessibility standard that emerges in the future.

11 msdn.microsoft.com/en-us/library/windows/apps/hh452702.aspx
12 msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx
13 msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx
14 w3.org/WAI/intro/wcag
15 w3.org/TR/mwabp

http://msdn.microsoft.com/en-us/library/windows/apps/hh452702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx
http://w3.org/WAI/intro/wcag
http://w3.org/TR/mwabp

You will also find Relationship between Mobile Web Best
Practices (MWBP) and Web Content Accessibility Guidelines
(WCAG)16 a helpful resource.

16 www.w3.org/TR/mwbp-wcag/

http://www.w3.org/TR/mwbp-wcag/

133Enterprise AppsPB

Enterprise Apps
Corporate decision makers now view mobile enterprise apps as
a strategic factor, a necessity, rather than an item on an ac-
countant’s spreadsheet. It may seems an obvious thing to say,
but the major risk at the moment, is not having an enterprise
mobile strategy. Business is now looking at ‘Mobile for All’
rather than limiting it to senior management, as it may have
been in the past.

Internal enterprise apps are capable to reduce the latency
of information transfer within a company. They increase the
agility of the worker by making competitive data available
at any time and anywhere. Apps can also allow companies to
engage with its customers, suppliers, and end consumers etc.
Examples of Enterprise Apps include field & sales staff software,
emergency response, inventory management, supply chain
management but also B2C marketing.

Many companies nowadays have a Chief Mobile Officer
(CMoO) or equivalent position. It is the CMoO’s job to co-
ordinate mobile trends and directions and to bridge the gap
between business and IT. Depending on the size and main
focus of the company, his/her job is also to either build up an
internal mobile software development team or coordinate the
cooperation with an external development agency.

To make sure that the mobile software delivers what the
employees/users want, that this is technically achievable
and that everything fits the overall company strategy, the
CMoO might consider setting up a Mobile Innovation Council
(MIC). The MIC should contain key members such as: skilled
representatives from the mobile development team, stakehold-
ers for mobile within the company, and most importantly end

users from various departments with expertise in the relevant
business processes.

Topics that the CMoO needs to focus on together with the
MIC include:

 — Strategy: Vision and direction for the general mobile
strategy and for the apps

 — Governance policies: Bring Your Own Device (BYOD) vs.
Chose Your Own Device (CYOD) and Mobile Device Manage-
ment & Security (MDM).

 — App specifications
 — App roadmap
 — Budget planning
 — Acceptance: Signing off the apps into production.
 — App deployment: Early feedback on demos and prototypes,

testing, mass deployment
 — Incentives: How to promote the adoption of mobile.

135Enterprise Apps

Mobile Device Management
In The Enterprise
When developing an enterprise app, you should always keep
in mind that the hardware containing sensitive company data
can get lost. Mobile Device Management (MDM) has to include
secure management of data, devices and applications.

This includes:

 — Device monitoring
 — License control
 — Distribution via an internal Over-The-Air (OTA) solution
 — Software inventory
 — Asset control
 — Remote control
 — Connection management
 — Application support & distribution

Security measurements include:

 — Password protection
 — On-device data encryption
 — OTA data encryption
 — Remotely lock devices
 — Remotely wipe data
 — Reprovision devices
 — Back-up data on devices

136Enterprise Apps

Mobile Enterprise Application Platforms

Usually, one key element of enterprise applications is data
synchronization. The mobile devices have to be refreshed with
relevant or up to date data from the company’s servers and the
updated or collected data has to be sent back. The scope of
data access is determined by the job responsibilities of the user
as well as by confidentiality policy. In any case synchronization
has to be secure, as corporate data is one of your most prized
assets. Furthermore, a company-wide accepted app will be
multi-platform.
To compensate the shortcomings of the native SDKs as well
as the common multi-platform solutions in these regards, you
might want to consider evaluating Mobile Enterprise Applica-
tion Platform (MEAP) solutions. MEAPs are mobile development
environments that provide the middleware and tools for
developing, testing, deploying and managing enterprise apps
running on multiple mobile platforms with various existing
back-end datasources. Their aim is to simplify development and
reduce development costs, where skills must be maintained for
multiple platforms, tools and complexities, such as authentica-
tion and data synchronization.

Available solutions include:
 — Amp Chroma by Antenna1

 — Kony2

 — SpringWireless3

 — Sybase Unwired Platform4

 — Syclo5

1 www.antennasoftware.com
2 www.kony.com
3 www.springwireless.com
4 www.sybase.com/products/mobileenterprise/sybaseunwiredplatform
5 www.syclo.com

http://www.antennasoftware.com
http://www.kony.com
http://www.springwireless.com
http://www.sybase.com/products/mobileenterprise/sybaseunwiredplatform
http://www.syclo.com

138Implementing Rich MediaImplementing Rich Media

Implementing Rich Media
“As many standards as handsets” is a truism when it comes
to the list of supported media formats on mobile phones.
In contrast to PCs, where most audio and video formats are
supported or a codec can easily be installed to support one,
mobiles are a different story. To allow optimization for screen
size and bandwidth, specific mobile formats and protocols
have been developed over the past few years. Small variations
in resolution, bit rate, container, protocol or codec can easily
cause playback to fail, so always test on real devices.

That said, most of today’s smartphones support MP4 h.264
320x240 AAC-LC,however multiple variations are possible
among handsets, even within one vendor or firmware version.
New formats are still added every year, such as WebM/vp81, an
open video standard running on Android 4+ in an attempt to
become the html5 standard (But not supported by Apple yet).

Here are the recommended full screen formats for highest
compatibility.

Container
mp4, 3gp, avi (BlackBerry only), wmv (Windows
Phone + BB10 only)

Protocol HTTP (progressive or download) or RTSP (streaming)

Video H.264, H.263

Audio AAC-LC, MP3, AAC+

Resolution
176x144 (Older phones), 320x240, 480x320,
480x800, 640x480 (Blackberry), 960x640 (iPhone),
1024x768 (iPad), 1280x720 (BB10, Samsung)

1 en.wikipedia.org/wiki/VP8

http://en.wikipedia.org/wiki/VP8

139Implementing Rich Media

Streaming vs. Local Storage

There are two options to bring media content to mobile
devices: Playing it locally or streaming it in real time from a
server.

To stream content through relatively unstable mobile
networks, a specific protocol called RTSP was developed that
solves latency and buffering issues. Typical frame rates are 15
fps for MP4 and 25 fps for 3gp, with data rate up to 48 kbps
for GPRS (audio only), 200 kbps for Edge, 300 kbps for 3G/
UMTS/WCMDA and 500 kbps for Wi-Fi and 4G. HD-video starts at
2Mbps and is not recommended for streaming (yet).

Apple’s open source Darwin streaming server2 can serve
streaming video and audio with the highest level of compat-
ibility and reliable RTSP combined with FFMPEG3 and is always
a good choice to stream 3gp or mp4 files.

When targeting Windows Mobile/Phone, Windows Media
Server4 is preferred to support HTTP streaming. Android 3.0 up-
wards also supports HTTP streaming. Note that atomic hinting
is required (see Progressive Download) and mp4 files are very
strict in encoding (use H.264 15 fps AAC-LC 48khz stereo). Only
HTC Android devices and Android 4.0 devices are less strict in
streaming formats and will play much more encoding variations
than other brands.

When streaming is not available on the phone, blocked by
the carrier or you want to enable the user to display the media
without establishing a connection each time, you can of course
simply link and download the file. This is as easy as linking to
a download on the regular web, but mobile phones might be

2 dss.macosforge.org
3 www.ffmpeg.org
4 www.microsoft.com/windows/windowsmedia/forpros/server/server.aspx

http://dss.macosforge.org
http://www.ffmpeg.org
http://www.microsoft.com/windows/windowsmedia/forpros/server/server.aspx

140Implementing Rich Media

stricter in checking for correct mime types. Use audio/3gp or
video/3gp for 3gp files and video/mp4 for mp4 files.

Some handsets simply use the file extensions for data
type detection, so when using a script such as download.
php a well-known trick is to add a parameter such as
download.php?dummy=.3gp to ensure correct processing of
the media. Some phones cannot play 3gp audio without video,
but a workaround is to include an empty video track in the file
or a still image of the album cover.

Depending on the extension and protocol, different players
might handle the request. On some phones, like Android, mul-
tiple media players can be available and a popup is displayed
to allow the user to select one.

Finally you can simply include media files in your mobile
app as a resource. On Android devices pay attention to support
media located on the SD-Cards (Android 3.1 and up) which re-
quires the android.permission.READ_EXTERNAL_STORAGE
permission.

Progressive Download

To avoid configuring a streaming server, a good alternative is
to offer progressive downloads, for which your media files can
be served from any web server. To do this, you have to hint
your files. Hinting is the process of marking several locations in
the media, so a mobile player can start playing the file as soon
as it has downloaded a small part of it (typically the first 15
seconds).

Possibly the most reliable open source hinting software
available is Mp4box5. Note that an mp3 file does not need and
cannot be hinted.

5 gpac.wp.institut-telecom.fr/mp4box/

http://gpac.wp.institut-telecom.fr/mp4box/

141Implementing Rich Media

Media Converters

To convert a wide variety of existing media to mobile phone
compatible formats FFMPEG is a must have (open source)
media format converter. It can adjust the frame rate, bit rate
and channels at the same time. Make sure you build or get
the binary with H263, H264, AAC and AMR encoder support
included. There are good converters available based on FFMPEG,
such as “Super” from eRightSoft6. For MAC users, QuickTime pro
(paid version) is a good alternative to encode and hint 3gp and
mp4 files. If you are looking for a complete server solution with
a Java/ open source background, check out Alembik7.

6 www.erightsoft.com/super
7 www.alembik.sourceforge.net

http://www.erightsoft.com/super
http://www.alembik.sourceforge.net

CREATIVE

MDGG

143Implementing Location-Based Services

Implementing
Location-Based Services
Location based services are one of the hot areas for mobile
applications. While nobody has yet proven that offering posi-
tion and heading information in itself is very lucrative, apps
which contain a geographically aware component, can provide
more relevant services, which may lead to greater revenue.
Knowing a user’s location means you can deliver more relevant
information; helping them find a nearby restaurant taking into
account the local weather forecast, finding where friends are,
or helping users find most scenic bike routes as croudsourced
by other bikers. Yet getting location data is only half the
story, providing the user with a meaningful representation is
a key factor in many apps, which usually means delivering a
graphical representation overlaid with routes, points-of-interest
et cetera. Yet, a comprehensive list of resources assorted by
proximity, can many times be more fruitful than a scrollable,
slow map view.

How To Obtain Positioning Data

Location-based applications can acquire location information
from several sources; via one of the phone’s available network
connections, GPS satellites, short range systems based on
visible tags or local short range radio, or old-school by inputing
data via the screen or keyboard.

144Implementing Location-Based Services

 — Network positioning:
Each GSM or UMTS base station carries a unique ID,
containing its country code, network id, five-digit Location
Area and two-digit Routing Area. The coordinates of a base
station can then be obtained by looking up the operator’s
declaration in a database. This information is not particu-
larly accurate and depends on the cell size (base station
coverage): Higher accuracy is obtained in urban areas than
in rural areas. Techniques, such as measuring the differ-
ence in the time-of-arrival of signals from several nearby
base stations (known as multilateration) can help improve
accuracy. For phones with WiFi capabilities, known wireless
LAN access points can also be used. Several companies
provide such WiFi data.

 — GPS positioning:
An on-board GPS module (or an external one) gives you
an accuracy ranging from 5 to 50 meters, depending on
quality of the hardware and how many satellites the GPS
module finds. Accuracy is also affected by the terrain,
canopy and wall materials which may obscure the satellite
signals: In cities, urban canyons created by clusters of tall
buildings can distort the signal, giving false or inaccurate
readings. Combining GPS with network positioning is
increasingly common: Assisted GPS, or A-GPS, uses an
intermediary, called an Assistance Server, in order to mini-
mize the delay to the first GPS fix. The server uses orbital
data, accurate network timing and network-side analysis
of GPS information. However, A-GPS does not mean a more
accurate position, but rather a faster result when the GPS
is initially enabled, or when GPS satellite coverage is poor.
This shortens the time needed for a location lock. Note:
most A-GPS solutions require an active cellphone network
connection.

145

 — Short range positioning:
Systems based on sensors – such as near field communica-
tion (NFC), Bluetooth and other radio-based tag systems
– use active or passive sensors in proximity to points of
interest, such as exhibits in a museum or stores in a shop-
ping mall. Low-tech solutions include bar codes and other
visual tags (such as QR codes) that can be photographed
and analyzed on a server or the phone; such tags may
contain an id from which a position can be looked up, or
latitude and longitude.

 — Manual input:
The user can specify their position by selecting a location
on a map, inputting an area code or a physical address.
This option is used typically for applications on feature
phones, which may lack other means of determining a
location.

How To Obtain Mapping Services

A map service takes a position as parameters and returns a
map, often with metadata. The map itself can be in the form
of one or more image bitmaps, vector data or a combination
of both. Vector data has several advantages over bitmaps:
it consumes less bandwidth and enables arbitrary zooming.
However it requires more processing on the client side. Bitmaps
are often provided in discrete zoom levels, each with a fixed
magnification.

Free maps, both served as bitmaps and vectors, include Open
Street Map1 or CloudMate2. Commercial maps include Garmin3,
Microsoft’s Bing resources4 to name a few.

1 wiki.openstreetmap.org/wiki/Software
2 developers.cloudmade.com/projects
3 garmin.com
4 microsoft.com/maps/developers

http://wiki.openstreetmap.org/wiki/Software
http://www.developers.cloudmade.com
http://www.garmin.com
http://www.microsoft.com/maps/developers

Some solutions, such as Google Maps5, are free when your
application is made available at no cost, but require you to
obtain a map key. Some map services, such as Google’s static
maps, are limited to serving a number of tiles to a map key or
IP address. Several of the sources share similar map formats
and are thus interchangeable.

Implementing Location Support On
Different Platforms
Location API for Java ME offers detail such as the latitude and
longitude position, the accuracy, response time, and altitude
derived from the on-board GPS as well as speed based on
performing consecutive readings.

With iOS there is integrated support for location but with
restrictions on how the location data can be generated by
the supporting functions. Currently, there is also an on-going
debate on how location data is recorded and stored on the
iOS devices and how Apple are planning to use this data for

5 code.google.com/apis/maps

http://www.code.google.com/apis/maps

147Implementing Location-Based Services

their own purposes. Android developers also have access to
high-level libraries and these devices are more liberal with
the choice of map sources, although they default to Google’s
map APIs. On Symbian devices, Nokia Maps can be used free of
charge including commercial use.

Microsoft’s MSDN has gathered location-aware resources for
Windows Phone 7 and beyond, under Location for Windows
Phone6

Since iOS 3.x and Android 2.0, Web app develop-
ers have been able to access geoinformation via the
navigator.geoposition interface, e.g calling navigator.
geolocation.getCurrentPosition(my_geo_handle)
gives you the opportunity to fetch the
my_geo_handle.coords.latitude and

6 msdn.microsoft.com/en-us/library/windowsphone/develop/ff431803

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff431803

148Implementing Location-Based Services

my_geo_handle.coords.latitude, after given permission
from the user and satellites are available. Via clever scripting,
this action can be combined with fallbacks to network lookups.

Geographical data often is presented with other information,
available in a number of formats. One of the widely accepted
standards is called geoRSS, and could look like this for a single
point-of-interest:

<entry>
<title>Byviken’s fortress</title>
 <description> Swedish 1900-century army
 installation, w. deep mote
 </description>
<georss:point>18.425 59.401</georss:point>
</entry>

There are other formats for geodata, but the basic idea is
similar; by harmonizing data streams and webservices, robust
mashups can be created to run seamlessly in various user
contexts. Other important formats for geoinformation include
the Geography Markup Language (GML), an XML encoding
specifically for the transport and storage of geographic informa-
tion, and KML which is an elaborate geoformat used in Google
Earth and related web services.

149

Tools For LBS Apps

Several companies provide developer-friendly tools and APIs
as a value added service. Using these dramatically speeds up
the development and deployment of location-aware services.
Each tool normally focuses on one or a lesser range of mobile
platforms.

Advertisement companies like Admob offer developers a
stand-alone location aware advertisement program, to better
target their offerings, while there are no map interfaces to be
seen, just the coordinates.

Below are more links to maps and location based service
resources:

 — Garmin Mobile XT SDK: developer.garmin.com
 — Android offline maps project: code.google.com/p/big-

planet-tracks/
 — TeleAtlas: developerlink.teleatlas.com
 — Nutiteq: www.nutiteq.com
 — RIM: us.blackberry.com/developers/ (search for “map api”)
 — Nokia Maps: api.maps.nokia.com

developer.garmin.com
code.google.com/p/big-planet-tracks/
code.google.com/p/big-planet-tracks/
developerlink.teleatlas.com
www.nutiteq.com
us.blackberry.com/developers/
api.maps.nokia.com

151Implementing Near Field Communication (NFC)

Implementing
Near Field Communication
(NFC)
Near Field Communication (NFC) is one of the latest technolo-
gies to come to mobile devices. It is a very-short range radio
technology, typically operating in a 0 to 4cm range, that relies
on a tag – that stores data – and a reader to read and write a
tag’s data. NFC enabled mobile phones are typically able to act
as either a tag or a reader.

The appeal of NFC as a technology for mobile applications is
the simplicity of operation, the user needs only to place their
phone in close proximity to a NFC tag or reader – there is no
setup or configuration to be done. The challenge with NFC will
be educating users about the technology, as its use will be a
new experience to many and does not have a direct analogy
in current behavior. For example, how many users will see the
action of touching a poster as an obvious way of opening a
related website? However, there is an entire industry poised to
educate users on the technology, so there are many opportuni-
ties for early adopters.

The NFC standards1 provide for three modes of operation that
can be used in mobile devices:

 — Read/Write: where a phone can read or write data to a tag
 — Peer to Peer: where two NFC enabled phones can exchange

data, from information for creation of a Bluetooth connec-
tion through to business cards and digital photos

1 www.nfc-forum.org/specs/spec_list

http://www.nfc-forum.org/specs/spec_list/

 — Card Emulation: where a phone can act as a tag or
contactless card

Types of use cases envisaged for NFC in mobile phones include:

 — Service Initiation: here a phone can read a tag embedded
or attached to everyday objects, the tag would provide
a URL, phone number or application specific string that
can be used to open a website, dial a number or initiate
application specific functionality. A practical application
might involve embedding a tag in a product’s packaging to
provide a way of opening the product’s website

 — Sharing: here two NFC enabled phones could share a piece
of information, a business card for example.

 — Connecting devices: an NFC enabled phone could read
connection settings from another phone or peripheral. For
example, a Bluetooth headset could include a tag that
provides the information for pairing the headset with a
phone

 — Ticketing: the NFC phone could be delivered a ticket which
is then “redeemed” by being read from the phone

 — Rechargeable or cashless payment cards: here the phone
can act as a replacement for a credit card or bank card,
travel cards such as Oyster2 or payments cards such as
Snapper3.

2 oyster.tfl.gov.uk/oyster
3 www.snapper.co.nz

http://https://oyster.tfl.gov.uk/oyster
http://www.snapper.co.nz

153Implementing Near Field Communication (NFC)

Support For NFC

Support for NFC in mobile devices is still relatively new.
However, the technology is arriving in the mainstream with
Apple, BlackBerry, Google, Microsoft and Nokia4 all having an-
nounced NFC support in their platforms and manufacturers such
as Google, BlackBerry, Nokia and Samsung having announced or
already started shipping smartphones with NFC capabilities5.

Creating NFC Apps

One challenge in creating NFC applications is that there is no
single standardized API. While Contactless Communication API
(JSR-257) provides a standard, it is not universally available
(Apple and Google for example certainly will not provide
support for it). Where it is offered, it can be supplemented
with additional manufacturer specific APIs, as Nokia does for
example.

Nokia provides support for NFC in the Qt Mobility APIs6,
making it likely that a single set of APIs can be used for
Symbian phones and the Nokia N9.

Otherwise it will essentially be one set of APIs per platform,
such as the Google APIs for Android7.

However, conceptually NFC is not that complex so the
number of APIs to master across multiple platforms should not
be a hindrance.

4 www.forum.nokia.com/nfc
5 www.nearfieldcommunicationsworld.com/nfc-phones-list
6 labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-released
7 developer.android.com/reference/android/nfc/package-summary.html

http://www.forum.nokia.com/nfc
http://www.nearfieldcommunicationsworld.com/nfc-phones-list
http://labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-released
http://developer.android.com/reference/android/nfc/package-summary.html

155Implementing Haptic Vibration

Implementing
Haptic Vibration
Nearly all mobile platforms allow for some form of haptic
vibration feedback control. This section will be your resource
for understanding the classes and methods between these
platforms.

The iOS platform

iOS may have the least amount of vibration documentation for
developers as Apple currently gives developers little vibration
control for their devices. The iOS vibration method below
applies to iPhones only. iPads and iPods current have no motors
for vibration support.

Use the SysSoundViewController Class1 with the
AudioServicesPlaySystemSound function and the
kSystemSoundID_Vibrate constant to trigger vibration on
your iPhone device. Calling this constant will turn your motor
on for a set duration of about 2 seconds.

The Android Platform

Android is unique for vibration control. It provides native
support and has more vibration control than iOS. Furthermore,
there are ways to extend this Android vibration control for
developers so they can create more console-like X-Box or Play-
Station feedback experiences. But whether you use the basic or
extended mothods below, please note that this platform may
be include existing accessibility haptic effects. For instance the

1 developer.apple.com/search/index.php?q=SysSoundViewController

http://https://developer.apple.com/search/index.php?q=SysSoundViewController

156Implementing Haptic Vibration

KickBack Accessibility Service2 provides haptic feedback. So,
consider how haptic effects generated by your application may
interact with, or disturb, such services.

For basic vibration control in Android, you must first
grant permission android.permission.VIBRATE
to allow your application to vibrate. Next you use the
Vibrator3 Class with getSystemService function and the
Context.Vibrator_Service to call the vibration service.

Within the above method you can vary the duration of the
vibration event in milliseconds and set vibration patterns by
setting up as many of start and sleep events as you like. The
basic Android vibrate control method only lets you control the
duration of vibration events.

Extended Android Vibration Control
Because the Android platform is open source, there is at least
one company that offers methods to extend Android’s vibration
control. Immersion Corporation’s Haptic SDK4 allows full vibra-
tion motor control of duration, amplitude and pulsing frequency
with a library of pre-defined haptic vibration feedback effects.
With this type of control, application developers have the
capability of designing vibration effects rivaling console gam-
ing vibration experiences while conserving battery life through
smart control of vibration amplitude and frequency parameters.
The extended method also contains an abstraction layer in
its effect libraries to compensate for the difference in motor
types between hardware manufacturers. This is important for
developers looking to program feedback effects once and have

2 KickBack is available as part of the eyes-free open source project code.
google.com/p/eyes-free

3 developer.android.com/index.html#q=Vibrator
4 immersion.com/haptic/sdk

http://code.google.com/p/eyes-free
http://code.google.com/p/eyes-free
http://developer.android.com/index.html#q=Vibrator
http://www.immersion.com/haptic/sdk

CREATIVE

MDGG

a consistent user experience across all Android devices. This
extended method supports Android 1.6 and above.

The bada Platform

Like the Android platform, bada has both a basic and extended
methods of vibration control. Bada uses three classes for
different types of vibration control: Vibrator, TouchEffect
and Haptic. The Vibrator class is the basic method used for
notification alerts and uses Start() and Stop() methods.
Within this structure you can set four types of parameters for
vibration patterns. The onPeriod and offPeriod parameters
allow you to designate in milliseconds the length of your
vibration period. The level parameter allows you to set
the intensity or magnitude of the vibration from 0 to 100,
controlling the percentage of voltage to the vibration motor.
Additionally, you can set a count parameter to repeat your
vibration pattern.

The TouchEffect and Haptic classes are bada’s extended
vibration methods. The TouchEffect class is used to playback
vibration and/or sound in respond user actions or application
events but mostly for UI events. The Haptic class is used
primary for applications development. Both the TouchEffect
and Haptic classes are only for bada devices using the
TouchSense Player API5 found in most high-end bada devices.

5 developer.bada.com/search/searchIndexList.do?searchValue=Vibrator

http://developer.bada.com/search/searchIndexList.do?searchValue=Vibrator

158Implementing Haptic Vibration

BlackBerry Platform

BlackBerry gives you the same basic on/off vibration
control that Android does, but without an extended
method. For BlackBerry you use the VibrationController6
Class with startVibrate(int duration) and
stopVibrate(int duration)

Windows 7 Platform

Windows offers a basic method for vibration control, but no
extended method at this time. Use the VibrateController7
Class with Start & Stop Methods to vibrate your device motor
from 0-5 seconds. For finer duration control you will need to
set a TimeSpan method in order to use millisecond values.

At this time of this writing there was no officially document-
ed method for vibration control from Microsoft. However, we
expect the Windows 7 class listed above should be compatible.

Haptic Vibration Design Considerations

When designing a user interface, keep in mind the ultimate ex-
perience of the user. Spend some time planning before starting
your Haptic implementation. Once the project is defined and
taking shape in your mind, consider the following guidelines:

 — Simple sensations are often the most effective. It is
sometimes surprising to realize that something like a very
simple Pop or Click sensation can enhance menu interac-
tions and increase user confidence within the application.

 — Sensations synchronized with audio and visual events,

6 developer.blackberry.com/search/?search=VibrationController
7 social.msdn.microsoft.com/search/en-us?query=VibrateController

http://https://developer.blackberry.com/search/?search=VibrationController
http://social.msdn.microsoft.com/search/en-us?query=VibrateController

like a simple button click event, make the whole greater
than the sum of its parts. Seeing, hearing, AND feeling an
object or activity promotes sensory harmony in a way just
seeing and hearing alone cannot.

 — It is bad to annoy the user. Poorly chosen or designed
touch sensations can be annoying and counterproductive.
While a high-pitched buzz may be very effective as part
of an alert, continuous reoccurring buzzing will eventually
cause a user to leave an application annoyed.

 — It is bad to confuse and overwhelm the user. Just as too
many beautiful sounds played simultaneously become a
cacophony, too many compelling touch sensations played
together or too close to each other in time and space can
become confusing and overwhelming.

 — Familiarity eases the user experience. Haptic effects can
relay important information to a user, which might not be
available or practical to provide through graphics or sound.
Standardization and consistency are important. Limiting
the Haptic effect language to a manageable, reused set of
sensations makes the user’s learning process easier because
there are fewer haptic effects to recognize.

161Security

Security
Readers of this guide know how widespread smart mobile
devices have become and how useful mobile apps can be.
We use these powerful, connected and mobile computers
for a multitude of things every day. Mobile devices are also
much more personal than personal computers ever have been.
People wake up with their phones, stay close to them all day,
and sleep next to them at night. Over time they become our
trusted ‘partners’.

Companies are now developing apps that take advantage
of this closeness and trust. For instance, your phone might be
treated as part of the authentication for accessing your bank
account. Or your tablet could get direct access to the online
movies you have bought. The device might even store a wallet
of real money for making payments with Near Field Communica-
tions (NFC).

Clearly mobile apps are going to attract the attention of
hackers and thieves whose interests extend well beyond getting
a 99 cent app for free. The historical network and endpoint
based defenses (like anti-virus tools) are not enough. Embed-
ding security into the mobile application is critical.

The architecture of mobile apps continues to evolve. Some
apps are native-only, and require distinctly different code bases
for each different mobile operating system. Some are web-
views, little more than a web site url wrapped in an icon. Oth-
ers are hybrids, a combination of native app functionality with
web views. Most mobile apps need to connect with backend
services using web technologies to fetch or update information.
Like web apps, classic application security needs to be used
with mobile apps. Input needs to be validated for size, type,
and values allowed. Error handling needs to provide useful error

162Security

messages to users that do not leak sensitive information. Do
not print stack traces or system diagnostics that hackers can
leverage to penetrate further. Penetration testing of applica-
tions is needed to assure that identification, authentication
and authorization controls cannot be by passed. Storage on the
devices needs to be inspected and tested to assure that sensi-
tive data and encryption keys are not stored in plain text. Log
files must not capture passwords or other sensitive information.
SSL configurations should be tested.

All the main mobile platforms require applications to be
cryptographically signed, so that binaries can be traced back
to their source and modified programs detected. Binary signing
gives the mobile platforms a higher level of application security
than used by many desktop platforms, but there are still plenty
of security threats that need to be addressed.

General Concepts

Users want to use your applications safely; they do not want
unwelcome surprises. Their mobile phone may expose them to
increased vulnerabilities, for instance potentially their location
could be tracked using an inbuilt GPS. The camera and micro-
phone could be used to capture information they prefer to keep
private, and so on. Applications can also be written to access
sensitive information such as their contacts. And applications
can covertly make phone calls and send SMS messages to
expensive numbers, which cost users lots of money.

Conversely, the application developer may be concerned
about their reputation, loss of revenue, and loss of intellectual
property. And corporations want to protect business data which
users may access from their mobile device, possibly using your
application. Can their data be kept separate and secure from
whatever else the user has installed?

163Security

Each mobile platform provides a distinct set of security
features. For instance Android has the concept of permis-
sions, which allow the application access to sensors such as
the GPS and to sensitive content. These permissions need
to be specified as part of creating the application in the
AndroidManifest.xml file. They are presented to the user
when they choose to install the application on their device.
Each permission increases the potential for your application
to do nefarious things and may scare off some users from even
downloading your application. So aim to limit the number of
permissions or features your application needs to an absolute
minimum.

The Threats to Your Applications

On some platforms (iOS and Android in particular), disabling
the built-in signature checks is a fairly common practice. You
need to consider whether or not it would matter to you if
someone could modify your code and run it on a jail-broken or
rooted device. An obvious concern would be the removal of a
license check, which could lead to your app being stolen and
used for free. A less obvious, but more serious, threat is the
insertion of malicious code (or malware) that could steal your
users’ data and destroy your brand’s reputation.

Reverse-engineering your app can give a hacker access to a
lot of sensitive data, such as the cryptographic keys for DRM-
protected movies, the secret protocol for talking to your online
game server, or the way to access credits stored on the phone
for your mobile payment system. It only takes one hacker and
one jail-broken phone to exploit any of these threats.

If your application handles real money or valuable content
you need to take every feasible step to protect it from Man-At-
The-End (MATE) attacks. And if you are implementing a DRM

164Security

standard you will have to follow robustness rules that make
self-protection mandatory.

The next step is to explore defenses against these threats,
starting with protecting managed code.

Hiding the Map of Your Code

Most mobile platforms are programmed using managed code
(Java or .NET), which is executed by a virtual machine rather
than directly on the CPU. As well as the instructions for the
virtual machine, the binary formats for these managed code
platforms include metadata that lays out the class hierarchy
and gives the name and type of every class, variable, method
and parameter.

Metadata helps the virtual machine to implement some of
the language features that programmers love and that some
GUIs depend on (e.g. reflection). However, metadata is also
very helpful to a hacker trying to reverse engineer the code.
There is no need for the hacker to guess what every piece of
code does when the metadata reveals the friendly, logical name
that its developer chose.

Fortunately, there are several obfuscation tools, such as
ProGuard1 and Arxan’s GuardIT2, that can help by processing
the compiled Java or .NET binary and give randomized names to
most items. Adopting one of these tools and using it on every
application will make it much more difficult to reverse engineer
your software.

1 proguard.sourceforge.net
2 www.arxan.com

http://proguard.sourceforge.net
http://www.arxan.com

165Security

On the Android platform there is also the option of using the
Java Native Interface (JNI) to access functions written in C and
compiled as native code. Native code is much more difficult to
reverse engineer than Java and is recommended for any part of
the application where security is of prime importance.

That said, even native code is not immune to hackers finding
interesting and useful function names.

“gcc” is the compiler normally used to build native code
for Android, its twin-sister “clang” is used for iOS. The default
setting for these compilers is to prepare every function to be
exported from a shared object, and add it to the dynamic sym-
bol table in the binary. The dynamic symbol table is different
to the symbol table used for debugging and is much harder to
strip after compilation. Dumping the dynamic symbols can give
a hacker a very helpful index of every function in the native
code. Using the –f visibility compiler switch3 correctly is
an easy way to make it harder to understand the code.

Finally, do not be fooled by the “C” in Objective-C. Along
with the machine code, compiled Objective-C code contains a
lot of metadata which can provide an attacker with a wealth of
information about names and the call structure of the applica-
tion. Currently, there are tools and scripts to read this metadata
and guide hackers, but there are no tools to hide it. The most
common way to build a GUI for iOS is by using Objective-C, but
the most secure approach is to minimize its use and switch to
plain C or C++ for everything beyond the GUI.

3 gcc.gnu.org/wiki/Visibility

http://gcc.gnu.org/wiki/Visibility

Hiding Control-Flow

Even if all the names are hidden, a good hacker can still
figure out how the software works. This is particularly true
for platforms using Java and .NET code, which use high-level
instruction sets and rely on the virtual machine to optimise
execution. These factors make it much easier to create tools
that will reverse the compilation process and create valid,
understandable source code from the binary. There are many
excellent de-compilation tools for both Java and .NET freely
available to every hacker.

Commercial managed-code protection tools are able to
deliberately obfuscate the path through the code by re-coding
operations and breaking up blocks of instructions, which makes
de-compilation much more difficult. With a good protection
tool in place, an attempt to de-compile a protected binary will
end in either a crashed de-compiler or invalid source code.

De-compiling native code is more difficult but can still be
done, using a tool such as the Hex Rays de-compiler4. Even
without a tool, it does not take much practice to be able to
follow the control-flow in the assembler code generated by a
compiler. Applications with a strong security requirement will
need an obfuscation tool for the native code as well as the
managed code.

4 www.hex-rays.com

http://www.hex-rays.com

167Security

Protecting Network Communications

The network communications is also vulnerable, particularly
when apps can be installed in emulators or simulators, where
network analyzers are freely available and able to monitor and
intercept network traffic. Consider protecting sensitive network
communications, for instance by using SSL for HTTP traffic
between your app and servers.

Active Protection That Stays With The
Application
The next step after passively hiding the functions within the
code base is to actively detect attempts to tamper with the
application and respond to those attacks.

You may be able to roll-your-own; for instance, several
techniques for protecting Android code are documented at
http://androidcracking.blogspot.com/. Commercial products are
another option, and some native code protection products,
such as Arxan’s EnsureIT, allow you to insert extra code at build
time that will detect debuggers, use checksums to spot changes
to the code in memory and allow code to be decrypted or
repaired on-the-fly. The use of code protection products can be
implemented such that release schedules are not affected and
the protection is tunable to a desired level of security as well
as being resilient to attack.

Using one of these software protection tools to actively
protect your software will give you the best chance of keeping
your secrets secret.

http://androidcracking.blogspot.com/

168Security

White-Box Cryptography

Cryptography code always handles sensitive data and therefore
needs special attention. Nearly all applications handling
encrypted data use the same small list of cryptographic
algorithms (mainly AES, RSA and ECC). These algorithms are
relatively secure, but what if an attacker can find the keys in
your binary or in memory at runtime? That might result in the
attacker unlocking the door to something valuable. Even if you
use public key cryptography and only half of the key-pair is
exposed, you still need to consider what would happen if an
attacker swapped that key for one where he already knew the
other half.

An active anti-tampering tool can help detect or prevent
some attacks on crypto keys, but it will not allow the keys to
remain hidden permanently. Enter white-box cryptography. The
aim of white-box cryptography is to implement the standard
algorithms in a way that allows the keys to remain hidden.
Some versions of white-box cryptography use complex math-
ematical approaches to getting the same results in a different
way. Others embed keys into look-up tables and state machines
that are difficult to reverse engineer.

Few application developers have the skills to write their own
secure cryptography code, but some of the companies that offer
software security tools also sell white-box cryptography librar-
ies. White-box cryptography will definitely be needed if you are
going to write DRM code or need highly-secure data storage.

Best Practices

Do not store passwords or other sensitive data on devices,
unless secure storage is used protected by a complex password.
Instead, store authentication tokens that have limited lifetime

169Security

and functionality. Be aware of the privacy policies that apply in
the country where you will be selling your application. Perform
the same secure software development life cycle when building
mobile apps as you would for backend services. Do not trust
even the databases you create for your mobile apps -- a hacker
may change the schema. Do not trust the operating system
to provide protection -- most OS protections can be bypassed
trivially by jailbreaking the device. Do not trust that native
keystores will keep data secret -- keystores can be broken by
bruteforce guessing unless the user protects the device with a
long complex password.

Protection Tools

Basic Java code renaming can be done using Proguard5, an
open-source tool. For more durable software protection you will
need to use a commercial tool.

Two vendors for managed-code (Java and .NET) protection
tools are Arxan Technologies6 and PreEmptive Solutions7.

For native code protection tools and white-box cryptography
libraries, the main vendors are Arxan and Irdeto8.

Resources

Here are some useful resources and references which may help
you:

5 www.proguard.sourceforge.net
6 www.arxan.com
7 www.preemptive.com
8 www.irdeto.com

http://www.proguard.sourceforge.net
http://www.arxan.com
http://www.preemptive.com
http://irdeto.com

170Security

 — Apple provides a general guide to software security9. It
also includes several links to more detailed topics for their
platform.

 — Commercial training courses are available for iOS10,
Android11, and Lancelot Institute12 provide secure coding
courses covering iOS and Android.

 — O’Reilly (2011) published a book on Android security
Jeff Six: Application Security For The Android Platform.
Processes, Permissions and Other Safeguards (Dec 2011)13
and another for iOS, Jonathan Zdziarski: Hacking and
Securing iOS Applications14 .

 — Charlie Miller et al. (2012) published iOS Hackers Hand-
book15, which demonstrates how easy it is to steal code
and data from iOS devices.

 — A free SSL tester is provided by Qualsys Labs16.
 — Extensive free application security guidance and testing

tools are provided by OWASP17, including the OWASP Mobile
Security Project18 .

 — An open-source mobile application performance monitoring
tool for Android is provided by AT&T’s Application Resource
Optimization tool19.

9 www.securecoding-iphoneapps.com/
10 developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
11 marakana.com/training/android/android_security.html
12 www.lancelotinstitute.com
13 shop.oreilly.com/product/0636920022596.do
14 shop.oreilly.com/product/0636920023234.do
15 www.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
16 www.ssllabs.com/ssltest/
17 www.owasp.org
18 www.owasp.org/index.php/OWASP_Mobile_Security_Project
19 developer.att.com

http://www.securecoding-iphoneapps.com/
http://developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
http://marakana.com/training/android/android_security.html
http://www.lancelotinstitute.com
http://shop.oreilly.com/product/0636920022596.do
http://shop.oreilly.com/product/0636920023234.do
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://https://www.ssllabs.com/ssltest/
http://www.owasp.org
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://developer.att.com

CREATIVE

MDGG

The Bottom Line

Mobile apps are becoming ever more trusted, but they are
exposed to many who would like to take advantage of that
trust. The appropriate level of application security is something
that needs to be considered for every app. In the end, your app
will be in-the-wild on its own and will need to defend itself
against hackers and other malicious threats, wherever it goes.

Invest the time to learn about the security features and
capabilities of the mobile platforms you want to target. Use
techniques such as Threat Modelling to identify the potential
threats relevant to your application. Reduce the security
footprints in terms of permissions (Android) or entitlements
(iOS). Perform code reviews and strip out non-essential
logging, debugging methods, and so on. Consider how a hacker
would analyse your code and use similar techniques, in a safe
and secure environment, against your app to discover some of
the vulnerabilities before they do, so you can mitigate these
vulnerabilities and make your app more secure.

173Testing

Testing
After all your hard work creating your application how about
testing it before unleashing it on the world? Testing mobile
applications used to be almost entirely manual, thankfully au-
tomated testing is now viable for many of the mobile platforms.
Several of the major mobile development platforms include test
automation in the core tools, including Android and iOS.

Cross-platform test automation tools are available for
popular platforms; some are free-of-charge and open-source,
others are commercial. This chapter covers the general topics;
testing for specific platforms is covered in the relevant chapter.

Testing Through The Five Phases of an
App’s Lifecycle
The complete lifecycle of a mobile app fits into 5 phases.
Testing applies to each phase.

1. Implementation:
This includes design, code and build tasks. Traditionally
testers are not involved in these tasks; however good
testing here can materially improve the quality and success
of the app. Ask questions of the design to shape the design
so it will fulfil the intended purposes, while avoiding mak-
ing serious mistakes. Phillip Armour’s paper on five orders
of ignorance1 is a great resource to help structure your
approach. Also consider how to improve the testability of
your app at this stage so you can make your app easier to
test effectively and efficiently. Practices, including unit
tests and Test-Driven-Development (TDD) apply to coding.

1 www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

http://www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

174Testing

And test your build process and build scripts to ensure
they are effective, reliable and efficient, otherwise you are
likely to suffer the effects of poor builds throughout the
life of the app.

2. Verification:
This includes unit tests, internal installation and system
tests: We have already mentioned unit tests, remember to
review them and assess their potency - how effective and
useful they are. Are they really useful and trustworthy? For
apps that need installing we need ways to deploy them to
specific devices for pre-release testing. For some platforms
including Android, iOS and Windows Phone; the phones
need to be configured so the apps can be installed. System
tests are often performed interactively, by testers. We
are also have a wide range of test automation tools and
frameworks for mobile apps these days and should consider
using these for some of our system tests. We will go into
more detail later in this section.

3. Launch:
This includes pre-publication and publication. For those of
you who have yet to work with major app stores be pre-
pared for a challenging experience where most aspects are
outside your control, including the timescales for approval
of your app. Also, on some app stores, you are unable to
revert a new release. So if your current release has major
flaws you have to create a new release that fixes the flaws,
then wait until it has been approved by the app store,
before your users can receive a working version of your
app. Given these constraints it is worth extending your
testing to include pre-publication checks of the app such
as whether it is suitable for the set of targeted devices.

175Testing

4. Engagement:
This includes search, trust, download and installation. Once
your app is publicly available users need to find, trust,
download and install it. We can test each aspect of this
phase. Try searching for your app on the relevant app store,
and in mainstream search engines. How many different
ways can it be found by your target users? What about
users outside the target groups - do you want them to find
it? How will users trust your app sufficiently to download
and try it? Does your app really need so many permissions?
How large is the download, and how practical is it to
download over the mobile network? Will it fit on the user’s
phone, particularly if there is little free storage available
on their device? And does the app install correctly - there
may be signing issues which cause the app to be rejected
by some phones.

5. Validation:
This includes payment, use and feedback. As you may
already know, a mobile app with poor feedback is unlikely
to succeed. Furthermore many apps have a very short
active life on a user’s phone. If the app does not please
and engage them within a few minutes it is likely to be
discarded or ignored. And for those of you who are seeking
payment, it is worth testing the various forms of payment,
especially for in-app payments.

Interactive Testing

Variety and movement can help expose bugs which remain dor-
mant when testing on a small set of devices in a fixed location
such as your workplace. Learn from your users – how do they
use your app, or similar apps? Then devise tests that mimic
the ways they use apps and devices. Buy, beg, borrow various

Testing

phones to test on. Select phones based on their popularity,
capabilities, version of the operating system, and so on.

Test your app when on the move, for instance when you
only have one hand free and are trying to enter text, make
selections in the UI, et cetera. Test the effects of intermittent
connectivity and how the app responds.

Rotate the screen and make sure the app is equally attrac-
tive and functional. Make sure it does not lose information. If
you app relies on sensors e.g. GPS, accelerometers, et cetera,
then find ways to control or affect these inputs to the app.
Sometimes the development tools enable you to fake these
inputs e.g. with mock locations.

The various guidelines at appqualityalliance.org/resources are
worth considering when devising your test cases.

Physical Devices
Although emulators and simulators can provide rough-and-
ready testing of your applications, and even allow tests to
be fully automated in some cases, ultimately your software
needs to run on real phones, as used by your intended users.
The performance characteristics of various phone models vary
tremendously from each other and from the virtual device on
your computer.

Here are some examples of areas to test on physical devices:

 — Navigating the UI: for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you are out and about. It is a mobile
device – most users will be on the move.

177Testing

 — Location: if you use location information within your
app: move – both quickly and slowly. Go to locations with
patchy network and GPS coverage to see how your app
behaves.

 — Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

 — Internet connectivity: establishing an internet connection
can take an incredible amount of time. Connection delay
and bandwidth depend on the network, its current strength
and the number of simultaneous connections.

For platforms such as Android and Java ME where there are so
many manufacturers and models, it is particularly useful to test
on a range of these devices. A good start is to pick a mix of
popular, new, and models that include specific characteristics
or features such as: touch screen, physical keyboard, screen
resolution, networking chipset, et cetera.
Try your software on at least one low-end or old device as
we want users with these devices to be happy too.

Remote Control
If you have physical devices to hand, use them to test your
application.

However when you do not, or if you need to test your
application on other networks, especially abroad and for
other locales, then one of the ‘remote device services’ might
help you. For instance they can help extend the breadth and
depth of your testing at little or no cost.

Several manufacturers provide this service free-of-charge for
a subset of their phone models to registered software develop-

ers. Both Nokia2 (for MeeGo and Symbian) and Samsung3 (for
Android and Bada) provide restricted but free daily access.

You can also use commercial services of companies such as
PerfectoMobile4 or DeviceAnywhere5for similar testing across
a range of devices and platforms. Some manufacturers brand
and promote these services however you often have to pay for
them after a short trial period. Some of the commercial services
provide APIs to enable you to create automated tests.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations.

Beware of privacy and confidentiality when using shared
devices.

Crowd-Sourcing
There are billions of users with mobile phones across the world.

Some of them are professional software testers, and of
these, some work for professional out-sourced testing service
companies such as uTest and mob4hire. They can test your
application quickly and relatively inexpensively, compared to
maintaining a larger dedicated software testing team.

These services can augment your other testing, we do not
recommend using them as your only formal testing. To get good
results you will need to devote some of your time and effort to
defining the tests you want them to run, and to working with
the company to review the results, et cetera.

2 apu.ndhub.net/devices
3 rtl.innovator.samsungmobile.com/
4 www.perfectomobile.com
5 www.deviceanywhere.com

http://apu.ndhub.net/devices
http://rtl.innovator.samsungmobile.com/

179Testing

GUI Test Automation

GUI test automation is one of the elixirs of the testing
industry, many have tried but few have succeeded in creating
useful and viable GUI test automation for mobile applications.
It is important to assess the longevity and vitality of the
test automation tools you plan to use, otherwise you may be
saddled with unsupported test automation code.

2012 has seen lots of new contenders of test automation
tools and services. Some commercial companies have open-
sourced their tools GorillaLogic’s MonkeyTalk6 and LessPainful’s
Calabash7. These tools aim to provide cross-platform support
particularly for Android and iOS. The companies charge for
consulting and other services, the software is free to use.

Sadly several opensource projects appear to be mothballed
including several we mentioned in earlier editions. Others
including Robotium8 and Frank9 are doing well and may even
have been incorporated into other test automation tools.

Test automation tools provided as part of the development
SDK are worth considering. They are generally free, inherently
available for the particular platform, and are supported by
massive companies.

Headless Client

The user-interface (UI) of a modern mobile application can
constitute over 50% of the entire codebase. If your testing is
limited to using the GUI designed for users you may needlessly
complicate your testing and debugging efforts. One approach is

6 www.gorillalogic.com/testing-tools/monkeytalk
7 https://github.com/calabash
8 code.google.com/p/robotium/
9 testingwithfrank.com/

http://www.gorillalogic.com/testing-tools/monkeytalk
http://https://github.com/calabash
http://code.google.com/p/robotium/
http://testingwithfrank.com/

180Testing

to create a very basic UI that is a thin wrapper around the rest
of the core code (typically this includes the networking and
business layers). This ‘headless’ client may help you to quickly
isolate and identify bugs e.g. related to the device, carrier, and
other environmental issues.

Another benefit of creating a headless client is that it may
be simpler to automate some of the testing e.g. to exercise all
the key business functions and/or to automate the capture and
reporting of test results.

You can also consider creating skeletal programs that ‘probe’
for essential features and capabilities across a range of phone
models e.g. for a J2ME application to test the File Handling
where the user may be prompted (many times) for permission
to allow file IO operations. Given the fragmentation and quirks
of mature platforms such probes can quickly repay the invest-
ment you make to create and run them.

Beware Of Specifics

Platforms, networks, devices, and even firmware, are all
specific. Any could cause problems for your applications. Test
these manually first, provided you have the time and budget to
get fast and early feedback.

Separate The Generic From Specific
Many mobile applications include algorithms, et cetera,
unrelated to mobile technology. This generic code should be
separated from the platform-specific code. For example, on
Android or J2ME the business logic can generally be coded as
standard Java, then you can write, and run, automated unit
tests in your standard IDE using JUnit. Consider platform-
specific test automation once the generic code has good
automated tests.

181Testing

Testability: The Biggest Single Win

If you want to find ways to test your application effectively and
efficiently then start designing and implementing ways to test
it; this applies especially for automated testing. For example,
using techniques such as Dependency Injection in your code
enables you to replace real servers (slow and flaky) with mock
servers (controllable and fast). Use unique, clear identifiers for
key UI elements. If you keep identifiers unchanged your tests
require less maintenance.

Separate your code into testable modules. Several years
ago, when mobile devices and software tools were very limited,
developers chose to ‘optimize’ their mobile code into mono-
lithic blobs of code, however the current devices and mobile
platforms mean this form of ‘optimization’ is unnecessary and
possibly even counter-productive.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the
problems are when the application does not work as hoped.

Test-Driven Development

Test-Driven Development (TDD) has become more popular and
widespread in the general development communities, particu-
larly when using Agile Development practices.

Although TDD is a struggle when using the current Mobile
Test Automation tools several people have provided examples
of using TDD successfully, for instance Graham Lee’s book
Test-Driven iOS Development10. You can also consider using TDD
for the generic aspects of the client code.

10 www.informit.com/store/product.aspx?isbn=0321774183

182Testing

Web-Based Content And Applications

We can benefit from the extensive history of test automation
tools for desktop web-based content and applications to
automate aspects of our Mobile equivalents.

Tools such as WebDriver wrap web browsers, including,
headless WebKit, Android, iPhone, Mobile Opera, and BlackBerry
as well as the main desktop web browsers. Google published a
useful blog post11 on how to write automated tests using the
AndroidDriver.

On the desktop the ability to wrap Firefox means it can
crudely emulate most mobile browsers by programmatically
changing browser parameters such as the user-agent string.
There is an article on the Google Testing blog12 that includes an
example of how to emulate the iPhone browser13. Beware, the
behavior of desktop browsers differs significantly from those on
mobile devices so test again using mobile web browsers before
launching your web app.

For interactive testing we can use the various emulators
supplied for various mobile platforms; and Opera have released
Opera Mobile Emulator, which allows us to quickly test how
sites would look and behave on the various platforms supported
by Opera Mobile14.

11 google-opensource.blogspot.co.uk/2011/10/test-your-mobile-web-apps-with.
html

12 googletesting.blogspot.com
13 googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
14 www.opera.com/developer/tools/

http://google-opensource.blogspot.co.uk/2011/10/test-your-mobile-web-apps-with.html
http://google-opensource.blogspot.co.uk/2011/10/test-your-mobile-web-apps-with.html
http://googletesting.blogspot.com
http://googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
http://www.opera.com/developer/tools/

$$$

184Monetization

Monetization
Finally you have finished your app or mobile website and
polished it as a result of beta testing feedback. Assuming you
are not developing as a hobby, for branding exposure or for a
charity, now it is time to make some money. But how do you do
that, what are your options?

In general, you have the following monetization options:

1. Pay per download: Sell your app per download
2. In-app payment: Add payment options into your app
3. Mobile advertising: Earn money from advertising
4. Revenue sharing: Earn revenue from operator services

originating in your app
5. Indirect sales: Affiliates, data reporting and physical

goods among others
6. Component marketplace: Sell components or a white-label

version of your app to other developers

When you come to planning your own development,
determining the monetization business model should be one
of the key elements of your early design as it might affect the
functional and technical behavior of the app.

Pay Per Download

Using pay per download (PPD) your app is sold once to each
user as they download and install it on their phone. Payment
can be handled by an app store, mobile operator, or you can
setup a mechanism yourself.

When your app is distributed in an app store – in most cases
it will be one offered by the target platform’s owner, such as

185Monetization

Apple, Google, RIM, Microsoft or Nokia – the store will handle
the payment mechanism for you. In return the store takes a
revenue share (typically 30%) on all sales. In most cases stores
offer a matrix of fixed price points by country and currency
($0.99, EUR 0.79, $3 etc) to choose from when pricing your
app.

Operator billing enables your customers to pay for your
app by just confirming that the sale will be charged to their
mobile phone bill or by sending a Premium SMS. Premium SMS
is still very popular for mobile web applications, Java games,
wallpaper and ringtones.

Other operator APIs enable you to include features such
as MMS, Call Back and Multimedia Conference in your app and
earn revenue from their use. However, operator billing has
been quite difficult to handle particularly if you want to sell in
several countries, as you needed to sign contracts with each
operator in each country.

In 2011, 57 of the world’s largest mobile phone network
operators and manufacturers founded the Wholesale Applica-
tions Community (WAC)1, a not for profit organization that
helps to standardize the mobile applications ecosystem. One
of their key products is the WAC Payment API, allowing a
developer to easily interface with all connected operators. As
recently announced2, WAC will be integrated into GSMA. GSMA
has the ability to make the technology available to their 800
operator members worldwide.

Each operator will take a revenue share typically 45% to
65% of the sale price, but some operators can take up to 95%
of the sale price (and, if you use them, a mediator will take its
share too). Security (how you prevent the copying of your app)

1 wacapps.net
2 www.gsma.com/newsroom/gsma-and-wac-join-forces-to-accelerate-mobile-

applications-market/

http://www.wacapps.net
http://www.gsma.com/newsroom/gsma-and-wac-join-forces-to-accelerate-mobile-applications-market/
http://www.gsma.com/newsroom/gsma-and-wac-join-forces-to-accelerate-mobile-applications-market/

186Monetization

and manageability are common issues with PPD but for some
devices this might be the only option.

As of Android 4, Google decides to ask for Credit Card data
at sign-up, something that Apple already required since 2008,
which according to analysts is the key differentiator for higher
monthly per app revenue. In addition to customers on monthly
billing arrangements, pre-pay customers can use their pre-paid
credits to purchase apps. Like BlueVia’s in-app payment API,
this is particularly significant for developers targeting emerging
markets where credit cards ownership is low.

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements, with Nokia Store having
by far the best coverage with operator billing available in 46
countries. In addition, Nokia will be bringing its expertise to
Microsoft’s Windows Phone Marketplace to rapidly expand its
operator billing coverage. Google and RIM are actively recruit-
ing operators too. The principal reason they are doing this
is that typically, when users have a choice of credit card and
operator billing methods users show a significant preference for
operator billing. Nokia, at least, also insulates developers from
the variation in operator share, offering developers a fixed 70%
of billing revenue.

The last option is to create your own website and implement
a payment mechanism through that, such as PayPal mobile,
Dutch initiative èM! Payment3, dial-in to premium landlines4 or
others.

Using PPD can typically be implemented with no special
design or coding requirements for your app and for starters
we would recommend using the app store billing options as
it involves minimal setup costs and minor administrative
overhead.

3 empayment.com
4 daopay.com

http://www.empayment.com
http://www.daopay.com

187Monetization

In-App Payment

In-app payment is a way to charge for specific actions or assets
within your application. A very basic use might be to enable
the one-off purchase of your application after a trial period –
which may garner more sales than PPD if you feel the features
of your application justify a higher price point. Alternatively,
you can offer the basic features of your application for free, but
charge for premium content (videos, virtual credits, premium
information, additional features, removing ads and alike). Most
app stores offer an in-app purchase option or you could imple-
ment your own payment mechanism. If you want to look at
anything more than a one-off “full license” payment you have
to think carefully about how, when and what your users will be
willing to pay for and design your app accordingly.

This type of payment is particularly popular in games (for
features such as buying extra power, extra levels, virtual credits
and alike) and can help achieve a larger install base as you
can offer the basic application for free. Note, however, that
some app stores do not allow third party payment options to
be implemented inside your app. This is done to prevent you
from using the app store for free distribution while avoiding
payment of the store’s revenue share.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment
method. If your application is implemented across various
platforms, you may have a different mechanism to build into
each platform’s version.

As with PPD we would recommend that you start with the
in-app purchasing mechanism offered by an app store, particu-
larly as some of these can leverage operator billing services, or
with in-app payment offered directly by operators. In Germany
Deutsche Telekom, Vodafone and Telefónica/O2 have become

188Monetization

the first operators to launch an in-app payment APIs that work
cross-operator and enable billing directly to the phone bill
of the user. From a user’s perspective, this is the easiest and
most convenient way to pay (one or two clicks, no need to
enter credit card numbers, user names or other credentials),
so developers can expect the highest user acceptance and
conversion rates.

Mobile Advertising

As is common on websites, you could decide to earn money
by displaying advertisements. There are a number of players
who offer tools to display mobile ads and it is the easiest way
to make money on mobile browser applications. Admob.com,
Buzzcity.com and inmobi.com are a few of the parties that
offer mobile advertising. However because of the wide range of
devices, countries and capabilities there are currently over 50
large mobile ad networks. Each network offers slightly different
approaches and finding the one that monetizes your app’s audi-
ence best may not be straightforward. There is no golden rule;
you may have to experiment with a few to find the one that
works best. However, for a quick start you might consider using
a mobile ad aggregator, such as smaato5, Madgic6 or innerac-
tive7 as they tend to bring you better earnings by combining
and optimizing ads from 30+ mobile ad networks. Most ad
networks take a 30% to 50% share of advertising revenue and
aggregators another 15% to 20% on top of that.

If your app is doing really well and has a large volume in
a specific country you might consider selling ads directly to

5 smaato.net
6 www.madgic.com madgic.com
7 www.inner-active.com inner-active.com

http://www.smaato.net
http://www.madgic.com%20madgic.com
http://www.inner-active.com%20inner-active.com

189Monetization

advertising agencies or brands (Premium advertising) or hire a
media agency to do that for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mecha-
nisms are also worth exploring. In some cases you may have to
use the vendor’s offering to be able to include your application
in their store.

In-application advertising will require you to design and
code your application carefully. Not only the display location
of ads within your app needs to be considered with care, also
the variations and opt-out mechanism. If adverts become
too intrusive, users may abandon your app, while making the
advertising too subtle will mean you gain little or no revenue.

It may require some experimentation to find the right level
and positions in which to place adverts.

Revenue Sharing

Revenue sharing with mobile operator for services built into
your app is an emerging opportunity for developers, and
one that is worth following. This monetization method lets
developers build services such as SMS, MMS, location, advertis-
ing, customer profile and operator billing into their apps. With
well-documented APIs that are free to use, revenue generated
is split transparently between operator and app owner.

While BlueVia is currently the only developer community
dedicated to this model, if its early adoption continues to
grow, it may become a recognized business model for mobile
operators.

190Monetization

Indirect Sales

Another option is to use your application to drive sales
elsewhere.

Here you usually offer your app or website for free and then
use mechanism such as:

1. Affiliate programs: Promote third party or your own paid
apps within a free app. See also MobPartner8. This can be
considered a variation on mobile advertising

2. Data reporting: Track behavior and sell data to interested
parties. Note that for privacy reasons you should not reveal
any personal information, ensure all data is provided in
anonymous, consolidated reports

3. Virtual vs. real world: Use your app as a marketing tool to
sell goods in the real world. Typical examples are car apps,
magazine apps and large brands such as Mac Donald’s and
Starbucks. Also coupon applications often use this business
model

There is nothing to stop you combining this option with any
of the other revenue generation options if you wish, but take
care that you do not give the impression of overcharging.

Component Marketplace

A Component Marketplace (CMP) provides another opportunity
for developers to monetize their products to other developers
and earn money by selling software components or white-
labelled apps. A software component is a building block piece
of software, which provides a defined functionality, that is to
be used by higher level software.

8 mobpartner.com

http://www.mobpartner.com

191Monetization

The typical question that comes up at this point is on how
CMPs contrast to open source. As a user, open source is often
free-of-charge. Source code must be provided and users have
the right to modify the source code and distribute the derived
work. http://opensource.org/docs/osd provides a good defini-
tion of open source.

Some component providers require a license fee. They
may provide full source code which enables the developer to
debug into lower level code. Some CMPs support all models:
Paid components with or without source code as well as free
components with or without source code.

If you are a developer searching for a component, CMPs offer
two major advantages: First, you don’t have to open source
your code just because you use software components. All open
source comes with a license. Some licenses like the Apache are
commercially friendly; others, such as AGPL and OSL, require
you to open source your code that integrates with theirs. You
might not want this. Secondly, CMPs provide an easy way to
find and download components. You can spend days browsing
open source repositories to find the right thing to use.

Component marketplaces have existed for decades now. The
most prominent marketplace is for components for Visual Basic
and .NET in the Windows community. Marketplaces such as
componentOne and suppliers like Infragistics are well known
in their domain. The idea of component marketplaces within
the mobile arena is quite new. Recently, Developer Garden and
Verious started into this domain9 . Also, the idea to open the
marketplace to semi-professional suppliers is new. In Developer
Garden, you can register yourself and offer your component to
the public – for free or as a paid offer.

Now imagine you built a piece of code which could be
seen as one or even several components. Next steps would

9 www.developergarden.com/component-marketplace/

http://www.developergarden.com/component-marketplace/

include: providing extensive and detailed documentation. You
might then also add several “hello-world” samples using your
component. Combine the component in source, or precompiled
with the documentation and the samples, and you are ready to
offer it on the component marketplace. Since your customers
will probably ask questions (the better the documentation is,
the fewer questions you will get), it often also makes sense to
offer an FAQ.

Marketing And Promotion

The flip side of revenue generation is marketing and promotion.
The need might be obvious if you sell your application

through your own website, but it is equally important when
using a vendor’s app store – even the smallest stores have
application counts in the 10s of thousands, so there will be a
lot of competition competing for users’ attention.

Some stores enable you to purchase premium positioning
either through banners or list placings. But in most cases you
will also need to think about other promotion mechanisms,
such as social networks, reviews on technology websites, Twit-
ter, Press releases. Nokia provides a useful Vendor independent
page of information on marketing your apps10.

10 forum.nokia.com/Distribute/Public_relations_guidelines.xhtml

http://www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml

Strategy

So with all these options what should your strategy be? It
depends on your goals, let us look at a few:

 — Do you want a large user base? Consider distributing your
application for free at first, then start adding mobile
advertising or split between a free and paid version, when
you have more than 100 thousand users worldwide

 — Are you convinced users will be willing to buy your app
immediately? Then sell it as PPD for $0.99, but beware
while you might cash several thousand dollars per day it
could easily be no more than a few hundred dollars per
week if your assessment of your app is misplaced or the
competition fierce

 — Are you offering premium features at a premium price?
Consider a time or feature limited trial application then use
in-app purchasing to enable the purchase of a full version
either permanently or for a period of time

 — Are you developing a game? Consider offering the app for
free with in-app advertising or a basic version then use in-
app purchasing to allow user to unlock new features, more
levels, different vehicles or any extendable game asset

 — Is your mobile app an extension to your existing PC web
shop or physical store? Offer the app for free and earn
revenue from your products and services in the real world

194Monetization

What Can You Earn?

One of the most common developer questions is about how
much money they can make with a mobile app. It is clear
that some apps have made their developer’s millionaires,
while others will not be given up their day job anytime soon.
Ultimately, what you can earn is about fulfilling a need and
effective marketing. Experience suggests that apps which save
the user money or time are most attractive (hotel discounts,
coupons, free music and alike) followed by games (just look at
the success of Angry Birds) and business tools (office document
viewers, sync tools, backup tools and alike) but often the
(revenue) success of a single app cannot be predicted. Success
usually comes with a degree of experimentation and a lot of
perseverance.

Learn More

If you want to dig deeper into the topic, check out the “Mobile
Developer’s Guide To The Parallel Universe” published by WIP.
The 2nd edition has just been published and is available on
their events and their website11.

11 wipconnector.com

http://www.wipconnector.com

FIGHTCLUBGALACTIC

196Appstores

Appstores
Appstores are the curse and the blessing of mobile developers.
On the bright side they give developers extended reach and
potential sales exposure that would otherwise be very difficult
to achieve. On the dark side the more popular ones now contain
hundreds of thousands of apps, decreasing the potential to
standout from the crowd and be successful, leading many
to compare the chances of appstore success to the odds of
winning the lottery. So, here are a few tips and tricks to help
your raise your odds.

Top 5 Appstores

Appstore Platform Daily
Downloads Alternatives

Android Market Android >50 million GetJar, Samsung,
Motorola,
Amazon and 50+
others

Apple iTunes
App Store

iOS >33 million Cydia (Jailbroken
iPhones)

Nokia Store Symbian, Qt,
Widget, Java

>11 million GetJar

Blackberry App
World

BlackBerry >3 million Crackberry

GetJar Java, Symbian,
Android, wid-
get

>2 million Appia, Handster,
Nexva

197Appstores

The volume of downloads makes some of these stores look
promising. However, the stores with the highest volume attract
the largest number of applications fighting for attention, so
you might want to pick your niche carefully or spend more time
marketing your app.

For example, a research4market’s study showed that in Q2
2011, Apple’s App Store and the Android Market were behind
Nokia’s Ovi Store, Windows Marketplace and BlackBerry’s App
World when it comes to the number of downloads any particular
app might achieve1. Also, it is worth noting that downloads do
not necessarily equal profits. Despite having fewer downloads,
apps in the Apple App Store generate four times the profit
of apps in the Android Market, according to research from
Distimo2. Make sure that your platform choice, app store choice
and business model all align with your revenue goals.

Basic Strategies To Get High

The most important thing to understand about appstores is
that they are distribution channels and not marketing ma-
chines. This means that while appstores are a great way to get
your app onto users’ devices, they are not going to market your
app for you. You cannot rely on the app stores to pump up your
downloads, unless you happen to get into a top-ten list. But do
not play the lottery with your apps, have a strategy and plan to
market your app.

1 www.research2guidance.com/apps-on-nokia’s-ovi-store-had-2.5-times-
higherdownload-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/

2 techcrunch.com/2011/12/20/distimos-year-end-report-shows-why-
developers-love-ios-iphone-4x-android-revenue-ipad-2x/

http://www.research2guidance.com/apps-on-nokia�s-ovi-store-had-2.5-times-higherdownload-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://www.research2guidance.com/apps-on-nokia�s-ovi-store-had-2.5-times-higherdownload-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://techcrunch.com/2011/12/20/distimos-year-end-report-shows-why-developers-love-ios-iphone-4x-android-revenue-ipad-2x/
http://techcrunch.com/2011/12/20/distimos-year-end-report-shows-why-developers-love-ios-iphone-4x-android-revenue-ipad-2x/

198Appstores

We have asked many developers about the tactics that
brought them the most attention and higher rankings in
appstores.

Many answers came back and one common theme emerged:
there is no silver bullet – you have to fire on all fronts!
However it will help if you try to keep the following in mind:

 — You need a kick ass app: it should be entertaining, easy to
use and not buggy. Make sure you put it in the hands of
users before you put it in a store.

 — Polish your icons and images in the appstore, work on
your app description, and carefully choose your keywords
and category. If unsure of or unsatisfied with the results,
experiment.

 — Getting reviewed by bloggers and magazines is one of the
best ways to get attention. In return some will be asking
for money, some for exclusivity, and some for early access.

 — Get (positive) reviews as quickly as possible. Call your
friends and ask your users regularly for a review.

 — If you are going to do any advertising, use a burst of
advertising over a couple of days. This is much more
effective than spending the same amount of money over 2
weeks, as it will help create a big spike, rather than a slow,
gradual push.

 — Do not rely on the traffic generated by people browsing the
appstore, make sure you drive traffic to your app through
your website, SEO and social media.

Multi-Store vs Single Store

With 120+ appstores available to developers, there are clearly
many application distribution options. But the 20 minutes
needed on average to submit an app to an appstore means you
could be spending a lot of time posting apps in obscure stores
that achieve few downloads. This is why a majority of develop-
ers stick to only 1 or 2 stores, missing out on a potentially
huge opportunity but getting a lot more time for the important
things, like coding! So should you go multi-store or not?

200Appstores

Multi-store Single store

The main platform appstores
can have serious limitations,
such as payment mechanisms,
penetration in certain countries,
content guidelines.

90%+ of smartphone users
only use a single appstore,
which tends to be the platform
appstoreshipping with the phone

Smaller stores give you more
visibility options (featured app)

Your own website can bring
you more traffic than appstores
(especially if you have a well-
known brand)

Smaller stores are more social
media friendly than large ones.

Many smaller appstores scrape
data from large stores, so your
app may already be there.

Operators’ stores have notori-
ously strict content guidelines
and can be difficult to get in,
particularly for some types of
apps.

For non-niche content, operator
or platform stores may offer
enough exposure to not justify
the extra effort of a multi-store
strategy.

Smaller stores may offer a wider
range of payment or business
model options, or be available in
many countries.

Some operators’ stores have
easier billing processes – such as
direct billing to a user’s mobile
account -- leading to higher
conversion rates.

Some developers report that 50%
of their Android revenues come
from outside of Android Market

iPhone developers only need 1
appstore

202Now What – Which Environment Should I Use?

Now What – Which
Environment Should I Use?
The answer to that questions is of course far from obvious. It
depends on what you are trying to achieve, how much budget
you have, what your strengths and weaknesses are and how
well you have defined your strategy. In this chapter, we will try
to give you a hand, presenting some key facts and figures that
might help you make up your mind.

The Business Perspective: Market Reach

The vast growth of smartphone penetration, from 28% in Q2
2011 to nearly 40% in Q2 2012 has opened up new horizons for
developers, as users are downloading more and more apps on
their devices. But this growth is unevenly distributed amongst
the major smartphone platforms. Android and iOS claim an
increasingly bigger piece of the pie; with bada, BlackBerry,
Symbian and Windows Phone getting the leftovers. According
to a recent research report Developer Economics 20121, a
platform’s reach is the most important factor for developers
when choosing a platform, meaning that developers are still
flocking around the Apple and Google platforms.

How does each platform fare in terms of reach? Let us take
a look at smartphone shipments and market share per platform
in Q2 2012.

1 www.DeveloperEconomics.com

http://www.DeveloperEconomics.com

203Now What – Which Environment Should I Use?

Platform Market Share Shipments
in Q2 Installed base

Android
(Google)

68% 103 million 427 million

iOS (Apple) 17% 26 million 198 million

BlackBerry
(RIM)

5% 8 million 108 million

Symbian
(Nokia)

4% 7 million 259 million

Windows Phone
(Microsoft)

3% 5 million 14 million

bada
(Samsung)

3% 4 million 19 million

You have to remember that these are global figures - the
regional market share of each platform is another matter
altogether. In a world where localised content is increasing in
importance, it is essential to know the details and characteris-
tics of your home market. For example, China is now the largest
smartphone market, having recently outpaced the US in terms
of handset activations. Moreover, while Android’s global market
share was close to 70% in Q2 2012, its share was even greater
in China, with a staggering 81%.

To find out about market share in your target region, check
out online resources such as comscore2, StatCounter3, Vision-
Mobile4 or Gartner5.

2 www.comscoredatamine.com/category/mobile
3 gs.statcounter.com
4 www.visionmobile.com
5 www.gartner.com

(Source: VisionMobile estimates, Tomi Ahonen)

http://www.comscoredatamine.com/category/mobile
http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com

204Now What – Which Environment Should I Use?

Another piece of the puzzle is available apps and downloads
per platform. Android and iOS are the clear winners in that
respect, but Windows Phone is steadily growing. Let us take a
look at available apps and downloads per smartphone platform,
as of Q2 2012.

Platform Available Apps Cumulative down-
loads

iOS (Apple) 670 thousand 31 billion

Android (Google) 600 thousand 20 billion

Windows Phone
(Microsoft)

110 thousand N/A

BlackBerry (RIM) 90 thousand 3 billion

It is clearly evident that Android is quickly catching up
to iOS in terms of available apps - and is also creeping up to
Apple in terms of cumulative downloads. However, Apple users
are generally more likely to be willing to actually spend money
on apps while Android users are expecting to get their software
for free.

Another piece of the puzzle is how many developers are
competing over the same piece of the pie. Usage of each
platform varies greatly, with Android and iOS again being in
the lead. The Developer Economics 2012 research Developer
Economics 20126 shows that Android and iOS are at the top in
terms of mindshare - i.e. the percentage of developers using
each platform, irrespective of which platform they consider to
be their ‘primary’. Other platforms, like Symbian and BlackBerry
are quickly losing ground.

6 www.DeveloperEconomics.com

http://www.DeveloperEconomics.com

205Now What – Which Environment Should I Use?

The table below shows the “Mindshare Index” of each platform,
as well as the YoY gain or loss.

Platform Mindshare Index YoY change

Android (Google) 76% +13%

iOS (Apple) 66% +12%

mobile web 53% -5%

Windows Phone
(Microsoft)

37% +3%

BlackBerry (RIM) 34% -24%

The Developer’s Perspective: Technology

Market reach is not the only deciding factor when choosing a
platform - technology is also a critical factor. Many developers
choose a platform based on their existing skills and knowledge
- as is the case with Java and Android. Other developers choose
their platform depending on revenue potential, while others
consider the associated costs of developing an app on a given
platform. Each platform comes with its own advantages and
disadvantages.

The table on the right presents developers’ opinions on each
platform - based on the Developer Economics 2012 research.

206

Poor Between 5% and 10% below average
Bad 10%+ below average
Average Average across platforms ±5%
Good Between 5% and 10% above average
Great 10%+ above average

Feature Set An
dr

oid

Bl
ac

kB
er
ry

iO
S

Ja
va

 M
E

Mob
ile

 W
eb

User reach

Revenues

Ease of development

Development costs

Learning curve

Rich APIs, features

Community support

Qt Wind
ow

s P
ho

ne

207Now What – Which Environment Should I Use?

There are many challenges when it comes to develop-
ment - fragmentation being the top one for many developers
today. But there are also many post-launch challenges, such as
tracking errors and bugs or customer support. The Developer
Economics research identified the top challenges for developers:
“Tracking errors and bugs” is identified as a challenge by 38%
of developers, followed by “Getting users to review your apps”
(30%) and “Updating the applications in the field” (25%).

The Developer’s Perspective: Marketing

Marketing; a dreaded word for many developers! But market-
ing is an integral part of every business venture and mobile
development is no exception. Even if you build the perfect
app, it is not important if nobody is using it. As any textbook
says, marketing strategy is a combination of four parameters:
product, price, promotion and place. All four are important
when creating your marketing mix, but let us focus on price for
now.

There are more than ten revenue models to choose from7,
leaving developers dazed and confused when it comes to
picking the right one. In terms of use, pay-per-download and
advertising are the most popular models - but that does not
mean they suit your strategy. The Developer Economics 20128
research identified not just the most common revenue models,
but also the most lucrative ones. The table to the right presents
the percentage of developers using each model, as well as the
average per-app month revenue for each one.

7 See the monetization chapter in this guide for details
8 www.DeveloperEconomics.com

http://www.DeveloperEconomics.com

Revenue model
Percentage (%)
of developers using
model

Average revenue
per app month

Subscriptions 12% $3,683

In-app purchases 19% $3,033

Pay-per download 34% $2,451

Freemium 18% $1,865

Advertising 33% $1,498

Since you are already using multiple platforms - accord-
ing to a recent research, the average number of platforms
used by each developer is 2.7 - you may then need to adjust
your strategy according to your retail channel or the specific
platforms you are targeting.

According to the Developer Economics research, it is actually
BlackBerry and iOS that top the per-app month revenue chart.
Android is third behind them, with Windows Phone bringing up
the rear. The table below presents the average per app-month
revenue for each platform.

Platform Revenue per app-month

Android $2,735

BlackBerry $3,853

iOS $3,693

Windows Phone $1,234

Note: These two tables calculate revenues across the lower 95% of
developer by per-app revenue. Which are the most common promo-
tional channels used by developers to promote their apps? According
to the research, 47% of developers use Facebook to promote their
apps, while 28% use mobile or desktop keyword search and 26% use
free demos or freemiums.

The Developer’s Perspective:
The Final Choice
At the end of the day, the final choice is yours. We hope we
have given you some good info to mull over and answered some
of your questions. There is no single, all-encompassing answer
that will make you the next Rovio - it has all got to do with
planning, hard work and planning. Word to the wise, choose
your environment not based on what you already know, but on
what you are trying to achieve and plan your strategy accord-
ingly.

212Epilogue

Epilogue
Thanks for reading this 11th edition of our Mobile Developer’s
Guide. We hope you have enjoyed reading it and that we helped
you to clarify your options.

If you like to contribute to this guide, sponsor upcoming
editions or get the book as a hardcopy, please send your
feedback to developers@enough.de.

If you are using Twitter, you are invited to follow us on
twitter.com/enoughsoftware and spread the word about the
project using the hashtag #mdgg

mailto://developers@enough.de
http://twitter.com/enoughsoftware

213About the Authors

About the Authors

Andrej Balaz / Enough Software
Andrej focuses on UI, UX and visual design for mobile applica-
tions and other interactive technologies. He is also in charge
of the layout and design of this guide. When not involved
with something mobile, he loves to dive into digital art and
illustration.
www.enough.de www.behance.net/andrejbalaz

Benno Bartels / InsertEFFECT
Benno started developing mobile software as a student. After
graduating high school, he and two friends founded InsertEF-
FECT in Nuremberg, Germany. Today, the company comprises 15
people designing and developing mobile apps. At InsertEFFECT,
Benno consults for companies that include Deutsche Bahn,
Immowelt and O2. He also loves to share his experience in
workshops and at BarCamp and Web Monday events.
www.inserteffect.com

Richard Bloor / Sherpa Consulting Ltd
Richard has been writing about mobile applications develop-
ment since 2000. He has contributed to popular websites,
such as AllAboutSymbian.com, but now focuses on assisting
companies in creating resources for developers. Richard brings
a strong technical background to his work, having managed
development and testing on a number of major IT projects,
including the Land Information NZ integrated land ownership
and survey system. When not writing about mobile develop-
ment, Richard can be found regenerating the native bush on his
property north of Wellington, New Zealand.

http://www.enough.de
http://behance.net/andrejbalaz
http://www.inserteffect.com

214About the Authors

Dean Churchill / AT&T
Dean works on secure design, development and testing of ap-
plications at AT&T. Over the past several years he has focused
on driving security requirements in mobile applications, for
consumer applications as well as internal AT&T mobile applica-
tions. He has been busy supporting AT&T’s emerging Mobile
Health and Digital Life product lines. He lives in the Seattle
area and enjoys downhill skiing and fly fishing.

Oliver Graf / Enough Software
Oliver has been coding software for several platforms since
2000. He works as a multi-platform developer for Enough
Software and writes about mobile development for several
magazines. Oliver was among the first registered developers for
bada. As one of the Samsung developer advocates, he connects
developers with Samsung (and vice-versa) to improve the bada
ecosystem.
www.enough.de www.dm-graf.de

Roland Gülle / Sevenval
In 2001, Roland joined Sevenval to experience the mobile
industry. As CTO, he is responsible for Sevenval’s product, tech-
nology and development. Roland specializes in web technolo-
gies and internet standards. He has extensive expertise in the
areas of usability, system architecture, project implementation
and solution-oriented approaches. He talks at conferences
about web, mobile, adaptation and performance.
www.sevenval.com www.fitml.com

http://www.enough.de
http://www.dm-graf.de
http://www.sevenval.com
http://www.fitml.com

215About the Authors

Julian Harty / Commercetest
Julian was hired by Google in 2006 as their first Test Engineer
outside the USA responsible for testing Google’s mobile
applications. He helped others, inside and outside Google, to
learn how to do likewise; and he ended up writing the first
book on the topic. He subsequently worked for eBay where his
mission was to revamp testing globally. Currently he is working
independently, writing mobile apps & suitable test automation
tools, and helping others to improve their mobile apps. He is
also writing a new book on testing and test automation for
mobile apps.

Bob Heubel / Immersion Corp.
Bob is a haptic technology evangelist with Immersion Corpora-
tion who specializes in assisting developers implement what is
known as force-feedback, tactile-feedback or rumble-feedback
effects. He has spent more than ten years working with
developers, carriers, OEMs and ODMs to design and implement
these sensations aimed at improving both gaming and user
interaction experiences. Bob graduated from UC Berkeley in
1989 with a BA in English Literature.
www.immersion.com

Ovidiu Iliescu / Enough Software
After developing desktop and web-based applications for
several years, Ovidiu decided mobile software was more to his
liking. He is involved in Java ME and Blackberry development
for Enough Software since 2009. He gets excited by anything
related to efficient coding, algorithms and computer graphics.
www.enough.de www.ovidiuiliescu.com

http://www.immersion.com
http://www.enough.de
http://www.ovidiuiliescu.com

216About the Authors

Gary Johnson / Sharkfist Software, LLC
Gary is currently contracting for mobile development across the
board Windows Phone, iOS and Android. His past experience
includes deep expertise in .NET, Silverlight and WPF. He has a
strong passion for all things mobile as well as creating great UI
and UX.

Alex Jonsson / MoSync
Alex likes anything mobile, both apps and web technologies as
well as cleverly connecting physical stuff to digital stuff. He
holds a Doctorate in Computer Science and still gives lectures
now and then. Alex has an eclectic urge to create new values
by finding new combinations of things, transferring knowledge
between disciplines and exploiting aspects of communication
and media with the aim of bringing people together. Alex is CTO
at MoSync Inc.
www.mosync.com

Matos Kapetanakis / VisionMobile
As marketing manager of VisionMobile his activities include
managing the VisionMobile website and blog, as well as coming
up with the concepts and marcoms for the illustrations and
infographics published by the company. Matos is also the
project manager of the Developer Economics research series, as
well as other developer research projects.
www.visionmobile.com

http://www.mosync.com
http://www.visionmobile.com

217About the Authors

Michael Koch / Enough Software
Michael has developed software since 1988 and joined the
development team at Enough Software in 2005. He holds the
position of CTO. He has led numerous mobile app development
projects (mainly for Java ME, Windows Mobile and BlackBerry)
and he is also an expert in server technology. Michael is an
open source enthusiast involved in many free projects, such as
GNU classpath.
www.enough.de

Tim Messerschmidt
Tim has been developing Android applications since 2008.
After studying business informatics, he joined the Berlin-based
Neofonie Mobile as Mobile Software Developer in 2011 and
has consulted for Samsung Germany as Developer Advocate
for Android and bada since 2010. Since 2012 he is working at
PayPal as Developer Evangelist for Europe. He is passionate
about UI, UX and Android development in general. Furthermore
he loves speaking at conferences, writing articles and all kind
of social media.
www.timmesserschmidt.de

Gary Readfern-Gray / RNIB
Gary is an Accessibility specialist working for the Royal
National Institute of the Blind. Located in the Innovation
Unit, he has a passion for the mobile space and particularly
for enabling accessible app development across a range of
platforms by engaging with developer communities.
www.rnib.org.uk

http://www.enough.de
http://www.timmesserschmidt.de
http://www.rnib.org.uk

218About the Authors

Alexander Repty
Alexander has been developing software for Mac OS X since
2004. When the iPhone SDK was released in 2008, he was
among the first registered developers for the program. As an
employee of Enough Software, he worked on a number of apps,
one of which was featured in an Apple TV commercial. He has
written a series of articles on iPhone development. As of April
2011, he started his own business as an independent software
developer and contractor.
www.alexrepty.com

Marcus Ross
Marcus is a freelance developer and trainer. After 10 years
of being an employee in several companies he is now doing
SQL‐BI Projects and everything mobile cross platform. He is a
regular author in the German magazine “mobileWebDeveloper”.
In his spare time, he is often seen at conferences, speaking on
mobile subjects and JavaScript. He also writes articles, books &
tweets on mobile development.
www.zahlenhelfer-consulting.de

Thibaut Rouffineau / WIP
Community and passion builder with a mobile edge, for the past
5 years Thibaut has been working to move the mobile developer
community towards greater openness and exchange. Thibaut is
VP for Developer Partnerships at WIP, the organizer of Droidcon
London. He is an enthusiast speaker on mobile topics and has
been heard around the world.
www.wipconnector.com

http://www.alexrepty.com
http://www.zahlenhelfer-consulting.de
http://www.wipconnector.com

219About the Authors

André Schmidt / Enough Software
André has been developing mobile applications since 2001. He
joined Enough Software in 2007, where he heads the develop-
ment of Open Source products for mobile developers and mobile
applications of all kinds. He mainly develops for Java ME,
Android and BlackBerry.
www.enough.de

Michel Shuqair / AppValley
Michel’s experience with telecoms started in 1999 and he
closely watched the mobile development space evolving from
Japan. Starting with black and white WAP applications, iMode
and SMS games, he moved to lead the mobile social network
m.wauwee.com. Serving almost 1,000,000 members, Michel
was supported by a team of Symbian, iPhone, BlackBerry and
Android specialists at headquarters in Amsterdam.
m.wauwee.com was acquired by MobiLuck.
www.appvalley.nl

Marco Tabor / Enough Software
Marco is responsible for PR, sales and much more at Enough
Software. He coordinates this project as well taking responsibil-
ity for finding sponsors and merging the input provided by the
mobile community.
www.enough.de

http://www.enough.de
http://www.appvalley.nl
http://www.enough.de

220About the Authors

Ian Thain / SAP
Ian is a Mobile Evangelist at SAP, though he started 12 years
ago with Sybase Inc. He regularly addresses audiences all over
the world providing mobile knowledge and experience for the
Enterprise. He also writes articles, blogs & tweets on Enterprise
Mobility and is passionate about the Developer & Mobile
Experience in the Corporate/Business world.
ianthain.ulitzer.com www.sap.com

Robert Virkus / Enough Software
Robert has been working in the mobile space since 1998. He
experienced Java fragmentation first hand when developing and
porting a mobile client on the Siemens SL42i, the first mass
market phone with an embedded Java VM. After this experience
he launched the Open Source J2ME Polish project in 2004.
J2ME Polish helps developers overcome device fragmentation.
He is the founder and CEO of Enough Software, the company
behind J2ME Polish and many mobile apps.
www.enough.de www.j2mepolish.org

http://ianthain.ulitzer.com
http://www.sap.com
http://www.enough.de
http://www.j2mepolish.org

Please spread the word about this project.
On Twitter use the hashtag #mdgg

THANK YOU

W

W 8
P

FREE

updated

ED I T I ON

printing sponsors:

an initiative by:

www.enough.de www.wipconnector.com

printing sponsors:

an initiative by:

A NON-COMMERCIAL, COMMUNITY-DRIVEN

OVERVIEW ON MOBILE TECHNOLOGIES FOR

DEVELOPERS AND DECISION-MAKERS.

A spectacular piece of work! You will be astonished by how

incredibly fast you can establish your presence in the mobile

market with the simple steps explained in this guide.

Daniel Hudson, www.webtechman.com

Extremely helpful content, also for non-developers.

And the design is nothing but fantastic!

Monika Lischke, Community Manager, Intel AppUp developer program

	Prologue
	An Introduction To
Mobile Development
	Form Factors and Usage Patterns
	Mobile Service Options
	Lost in the Jungle

	Android
	Prerequisites
	Implementation
	Testing
	Distribution

	bada
	Getting Started
	Implementation
	Resources
	Testing
	Distribution

	BlackBerry Java Apps
	Prerequisites
	Java SDK
	IDE
	Desktop Manager
	Coding Your Application
	Services
	Testing
	Porting
	Signing
	Distribution

	BlackBerry 10
	The Alpha Device
	Development
	Testing
	Signing
	Distribution

	iOS
	Prerequisites
	Implementation
	Testing
	Distribution
	Books
	Community

	Java ME (J2ME)
	Prerequisites
	Implementation
	Testing
	Porting
	Signing
	Distribution

	Qt
	Prerequisites
	Creating Your Application
	Testing
	Packaging
	Signing
	Distribution

	Windows Phone
	UI Design
	Development
	Functions And Services
	Multitasking And Application Lifecycle
	Native Code
	Distribution
	Testing And Analytics
	Monetization
	Resources
	Windows Phone 8

	Windows 8
	The Artist Formerly Known As Metro
	Prerequisites
	Developing Metro Style Apps
	Distribution
	Resources

	Going Cross-Platform
	App Development Process
	Limitations And Challenges Of Cross Platform Approaches
	Cross-Platform Strategies
	Cross-Platform App Frameworks
	Cross-Platform Game Engines

	Web Technologies
	Usability
	Performance
	HTML5
	WebApps
	Adaptation
	Technical Limits of Web Technologies
	HTML without Browsers
	Test & Debugging
	Summary

	Accessibility
	Developing Accessible Android Apps
	Developing Accessible BlackBerry Apps
	Developing Accessible iOS Apps
	Developing Accessible Symbian / Qt Apps
	Developing Accessible Windows Phone & Windows 8 Apps
	Developing Accessible Mobile Web Apps

	Enterprise Apps
	Mobile Device Management
In The Enterprise
	Mobile Enterprise Application Platforms

	Implementing Rich Media
	Streaming vs. Local Storage
	Progressive Download
	Media Converters

	Implementing
Location-Based Services
	How To Obtain Positioning Data
	How To Obtain Mapping Services
	Implementing Location Support On Different Platforms
	Tools For LBS Apps

	Implementing
Near Field Communication (NFC)
	Support For NFC
	Creating NFC Apps

	Implementing
Haptic Vibration
	The iOS platform
	The Android Platform
	The bada Platform
	BlackBerry Platform
	Windows 7 Platform
	Haptic Vibration Design Considerations

	Security
	General Concepts
	The Threats to Your Applications
	Hiding the Map of Your Code
	Hiding Control-Flow
	Protecting Network Communications
	Active Protection That Stays With The Application
	White-Box Cryptography
	Best Practices
	Protection Tools
	Resources
	The Bottom Line

	Testing
	Testing Through The Five Phases of an App’s Lifecycle
	Interactive Testing
	GUI Test Automation
	Headless Client
	Beware Of Specifics
	Testability: The Biggest Single Win
	Test-Driven Development
	Web-Based Content And Applications

	Monetization
	Pay Per Download
	In-App Payment
	Mobile Advertising
	Revenue Sharing
	Indirect Sales
	Component Marketplace
	Marketing And Promotion
	Strategy
	What Can You Earn?
	Learn More

	Appstores
	Top 5 Appstores
	Basic Strategies To Get High
	Multi-Store vs Single Store

	Now What – Which Environment Should I Use?
	The Business Perspective: Market Reach
	The Developer’s Perspective: Technology
	The Developer’s Perspective: Marketing
	The Developer’s Perspective:
The Final Choice

	Epilogue
	About the Authors

