
Don‘t Panic

MOBILE DEVELOPER‘S
GUIDE TO THE GALAXY

17th Edition October 2017
This Developer Guide is licensed under the

Creative Commons BY 2.5 License.

Please send your feedback,
questions or sponsorship requests to:
mobiledevguide@open-xchange.com

Follow us on Twitter: @MobileDevGuide

Art Direction and Design by

Cornelius Kwietniak
Mladenka Vrdoljak

Editors:

Marco Tabor
Mladenka Vrdoljak

www.mobiledevelopersguide.com

https://twitter.com/MobileDevGuide
http://www.mobiledevelopersguide.com

1 Prologue

4 The Galaxy of Mobile: Past, Present and Future

16 From Idea to Prototype

44 Android

64 iOS

78 Going Cross-Platform

86 Mobile Web

126 Enterprise Apps

140 Mobile Gaming

168 The Internet of Things (IoT)

178 Artificially Intelligent Apps

Mobile Developer’s Guide
Contents

 by Robert Virkus

 by Andrej Balaz

 by Vikram Kriplaney, André Schmidt & Daniel Böhrs

 by Alex Repty

 by Robert Virkus

 by Ruadhan O'Donoghue

 by Ian Thain & Davoc Bradley

 by Oscar Clark

 by Alex Jonsson & Aaron Ardiri

 by Robert Virkus

192 Security & Privacy

210 Accessibility

234 Testing

260 Mobile Analytics

274 Collecting & Understanding User Feedback

288 Monetization

306 Epilogue

308 About the Book

 by Dean Churchill & Neil Cook

 by Sally Cain

 by Julian Harty & Marc van’t Veer

 by Julian Harty

 by Julian Harty

 by Michel Shuqair

Prologue
Wow, it is the 17th edition already. Time flies. Long-time
followers and fans of this book might have recognized that
with this edition, the logo of Enough Software as publisher has
disappeared from the cover. That is because our team has fully
joined Open-Xchange last year - we look forward to improving
the world of open source communication and collaboration
tools. And we are happy that OX recognizes the value of this
book project as a source of knowledge for anyone willing to
improve his or her apps or planning to enter the apps market.

As usual, you will find all the basics along with advanced
topics about mobile app and web development in this edition.
All chapters have been reviewed, updated and often extended
once again to make sure it contains all today's relevant stuff.
With this release we have added another 50 pages of content:
The mobile web chapter has been completely replaced with
fresh content and we included two new chapters including one
about artificial intelligence and the role it plays within the
mobile ecosystem.
Of course this does not mean that there is no room for even
more enhancement, so please let us know what content you
are missing. Or even better: Get involved and share your
knowledge with the community by becoming a contributor for
the next edition. You know where to find us :)

Prologue1

Cheers,
Robert + Marco / Open-Xchange
Bremen, September 2017

PS: Please follow us on Twitter @MobileDevGuide and visit
mobiledevelopersguide.com to obtain the electronic edition of
this booklet.

PPS: In case you know a company interested in sponsoring
the printing of upcoming editions, please let us know.

Prologue2

http://twitter.com/mobiledevguide
http://mobiledevelopersguide.com

The Galaxy of Mobile: Past,
Present and Future
In the good old days we had lots of choice in the mobile space
- feature phones & smart phones, Symbian, BlackBerry, webOS,
bada, Firefox OS, Ubuntu Touch, Windows Phone, Sailfish OS,
Tizen and of course Android and iOS, etc.

Today, we have a duopoly of Android and iOS. While Sailfish
and Tizen and few others still do exist, they play a niche
role - same for Windows after Microsoft retreated from the
mobile market. Retrospectively the same has happened like in
the home computer industry of the 1980's - one player - in this
case the IBM-compatible PC - took the majority share and left
only pieces to the other competitors.

In the mobile industry Google's Android operating system
is the major player, with Apple following with a comparatively
small but very lucrative share. Without any paradigm shift -
like perhaps voice user interface represent - we expect this
situation not to change for the foreseeable future.

Stand Out in a Crowded Market

With the increasing competition in the apps space there are
various aspects that are worth considering:

 — Experiences can carry across a variety of form fac-
tors - may it be in-car-systems, TVs, PCs, game console,
augmented reality or voice-enabled smart home systems.
As mobile technology moved to many systems, you can
use your existing app development skills to reach these
form factors. But make sure to adapt to each platform in

B
Y

 R

ob
er

t
Vi

rk
us

The Galaxy of Mobile: Past, Present and Future4

The Galaxy of Mobile: Past, Present and Future

the best possible way, do not limit yourself to the least
common denominator!

 — Users seem to be less likely to try and install new apps,
therefore existing apps will increase their features - mov-
ing from a single-purpose to a multi-purpose app world.

 — With multi-purpose apps, extensions play an important
role. Instead of creating and maintaining your own
app you can also extend existing apps such as WeChat,
Facebook Messenger, Microsoft Office, or even system
extensions like the iOS 11 FileProvider or the Today app
extensions. Search for "zero UI" and "atomized apps" to
learn more.

 — Take notifications seriously and make sure to add interac-
tion options to your notifications.

 — Think about creating extension points in your app to allow
others to get their services into your app.

 — Take your target regions into account. In many regions
feature phones are still the dominant platform, making
good old Java MIDlets1, USSD2 and STK3 or SMS4-based
services options worth considering.

 — Driving engagement is - as always - critical. One of the
biggest driver for apps is communication and socializing.
Instead of creating your own solutions you can consider
adding support for matrix.org or mastodon.social, for
example.

 — If you consider adding artificial intelligence to your app
- and you should - please read our new chapter about AI
apps in this edition.

1 en.wikipedia.org/wiki/MIDlet

2 en.wikipedia.org/wiki/USSD

3 en.wikipedia.org/wiki/SIM_Application_Toolkit

4 en.wikipedia.org/wiki/SMS

5

https://matrix.org
https://mastodon.social
https://en.wikipedia.org/wiki/MIDlet
http://en.wikipedia.org/wiki/USSD
https://en.wikipedia.org/wiki/SIM_Application_Toolkit
https://en.wikipedia.org/wiki/SMS

The focus of this book is on developing mobile apps, which
encompasses a number of phases including: planning and
specification, prototyping and design, implementation, internal
testing and deployment, deployment to an app store, discovery
by users, installation, use and feedback. Ultimately, we want
our users to enjoy using our apps and to give us positive
ratings to encourage other users to do likewise.

Keep reading to learn how to develop apps for the major
platforms. Should this be the first time that you have con-
sidered getting involved, do not delay; mobile has become
the predominant form of computing in many areas already. At
a global scale, mobile web usage overtook desktops5. Same
applies for games: Mobile is generating more revenue than any
other gaming market today6. And at least in the U.S., time
spent on mobile app usage even surpassed the good old TV7.

While developing mobile apps shares many common feature
with developing other software, it has specific characteristics.
We will cover some of these next.

5 www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-
desktop-for-first-time

6 www.superdataresearch.com/market-data/market-brief-year-in-review

7 dminc.com/blog/mobile-app-usage-surpasses-tv

The Galaxy of Mobile: Past, Present and Future6

http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time
https://www.superdataresearch.com/market-data/market-brief-year-in-review/
http://dminc.com/blog/mobile-app-usage-surpasses-tv/

How to Service Mobile Devices

There are several ways to realize a mobile service:

Native Apps
A native app is programmed in a platform specific language
with platform specific APIs. It is typically purchased, down-
loaded and upgraded through the platform specific central
app store. Native apps usually offer the best performance,
the deepest integration and the best overall user experience
compared to other options. However, native development is
often also the most complex development option. When start-
ing new apps you should consider using Kotlin for Android and
Swift for iOS, rather than Java and Objective-C. Find further
information on how to get started in the dedicated Android
and iOS chapters.

Websites & Web Apps
Websites or - increasingly - so called single page applications
are written in a variety of languages and use HTML and CSS for
rendering. Consider using progressive web apps8 and configure
them for iOS desktop pinning9.

Web apps run without app store, so you are independent of
app stores which is both good because you are not limited by
the app store and bad because it is harder for your users to
find you.

Of course, you also find a dedicated chapter on mobile web
development in this book.

8 developers.google.com/web/progressive-web-apps

9 developer.apple.com/library/content/documentation/AppleApplications/
Reference/SafariWebContent/ConfiguringWebApplications/
ConfiguringWebApplications.html

7 The Galaxy of Mobile: Past, Present and Future

https://developers.google.com/web/progressive-web-apps
https://developer.apple.com/library/content/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/content/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/content/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html

Cross-Platform Apps
There is a multitude of cross-platform services around that
provide of write-once run-everywhere scenarios. Even when
dealing with only two dominant platforms, cross-platform tools
can help you to update and maintain your services with less
effort. Read the cross-platform chapter to understand your
options in this regard.

SMS, USSD and STK
Simple services can be realized with SMS, USSD or STK. Every-
one knows how SMS (Short Message Service) text messaging
works and every phone supports SMS, but you need to convince
your users to remember textual commands for more complex
services. In the UK in many towns parking charges can be paid
using SMS messages.

USSD (Unstructured Supplementary Service Data) is a
GSM protocol used for pushing simple text based menus, the
capabilities depend on the carrier and the device. In Sri Lanka,
visitors can receive a free SIM card which is registered using
USSD menus.

STK (SIM Application Toolkit) enables the implementation
of low-level, interactive apps directly on the SIM card of a
phone. STK may appear irrelevant when so much focus is on
smartphone apps; however, for example, M-Pesa is an STK app
which is transforming life and financial transactions in Kenya
and other countries.10

10 mpesa.in

The Galaxy of Mobile: Past, Present and Future8

http://mpesa.in

Duopoly

The duopoly of Android and iOS has been further cemented in
2017 with Android and iOS controlling 99.8% of the worldwide
market share in smartphone sales.

Platform Market Share
Q1 2015

Market Share
Q1 2016

Market Share
Q1 2017

Android 78.9% 84.1% 86.1%

iOS (Apple) 17.9% 14.8% 13.7%

Other 3.3% 1.1% 0.2%

(Source: gartner.com/newsroom/id/3725117 and gartner.com/newsroom/

id/3061917)

http://www.gartner.com/newsroom/id/3725117
http://www.gartner.com/newsroom/id/3061917
http://www.gartner.com/newsroom/id/3061917

Niche Players

Why bother serving niche players? Because those niches will
protect you from competition, because a mobile niche may
be dominant or important on other form-factors - such as
Windows on PC or Tizen on TV systems and smartwatches
-, because they offer a truly open ecosystem - like Sailfish,
and because they provide a better foundation for the future
without all that baggage from the past - such as Fuchsia.

The regional market share of each platform varies signifi-
cantly. In a world where localized content is increasing in
importance, it is vital to know the details and characteristics
of your target market. For example, China is the largest smart-
phone market today, but Chinese Android handsets are typically
based on the Android Open Source Platform (AOSP) and come
without the Google Play Store or the Google Mobile Services.
At the same time, Apple is especially strong in the U.S.: In
March 2017, 44.5 percent of U.S. smartphone subscribers were
using an iOS device11.

To find out about market share in your target region, check
out online resources such as Netmarketshare12, comscore13,

11 Nevertheless, Android is leading in the US as well holding 53.4 percent
of the market, see statista.com/statistics/266572/market-share-held-by-
smartphone-platforms-in-the-united-states

12 www.netmarketshare.com

13 www.comscore.com/Insights/Data-Mine

The Galaxy of Mobile: Past, Present and Future10

http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://www.netmarketshare.com
http://www.comscore.com/Insights/Data-Mine

StatCounter14, VisionMobile15, Gartner16, Statista17 or Kantar
Mobile World Panel18.

Windows
Windows Phone has given important impulses to the mobile
ecosystem. Their "flat design" patterns have been adapted
on iOS and Android as well and for some years it seems as
if a Windows-based operating system on smartphones might
become the third attractive platform for app developers. But
in spite of Microsofts and Nokias enormous and cost-intensive
efforts, its world wide market share decreased again in the
past years and never reached a level where masses of develop-
ers considered it as a viable alternative. So Microsoft tried to
change the rules with Windows 10 - now you can develop the
very same app for both PC and Mobile (and for IoT, HoloLens
and Xbox, too). However, Windows in the mobile ecosystem
is only relevant for tablets today. Microsoft realized this some
time ago and sold the Nokia brand to the Chinese phone
manufacturer Foxconn in 2016 who are now releasing Android-
based Nokia phones. New impulses are expected to come from
Windows on ARM and a rumored ultra-mobile PC generation.

Tizen
Tizen19 has enjoyed quite a success in the smartwatch market,
however none of Samsung's four Tizen-based phones has found
its way to the European or US market.

14 gs.statcounter.com

15 visionmobile.com

16 gartner.com

17 statista.com/markets/418

18 kantarworldpanel.com/global/smartphone-os-market-share

19 tizen.org

11 The Galaxy of Mobile: Past, Present and Future

http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com
http://www.statista.com/markets/418
http://www.kantarworldpanel.com/global/smartphone-os-market-share
http://www.tizen.org

Seemingly gently yet continuously pushed forward by Samsung
and Intel, Tizen aims to power also TVs, tablets, netbooks and
in-vehicle infotainment systems.

Typical Tizen apps are web based, but you can also create
native C-based apps. Start your Tizen journey on developer.
tizen.org and developer.samsung.com/gear. For latest news and
rumors, visit tizenexperts.com.

Sailfish OS
Although Jolla20 - the company behind the Sailfish OS21 -
stopped producing devices themselves, the open OS is still
being pushed forward. Start developing for Sailfish OS by
visiting sailfishos.org/develop. One easy path to Sailfish is to
use your existing Android app, but you can also create native
Apps using Qt/C++ or even Python.

Fuchsia OS
Google is researching a new real-time operating system called
Fuchsia22 that is not based on Linux but rather on a custom
microkernel. Interestingly enough, Google released a cross-
platform development framework called Flutter23 that allows
you to build for Android, iOS and Fuchsia at the same time.

20 jolla.com

21 sailfishos.org

22 en.wikipedia.org/wiki/Google_Fuchsia

23 flutter.io

The Galaxy of Mobile: Past, Present and Future12

https://developer.tizen.org
https://developer.tizen.org
http://developer.samsung.com/gear
http://www.tizenexperts.com
https://sailfishos.org/develop/
http://jolla.com
http://sailfishos.org
https://en.wikipedia.org/wiki/Google_Fuchsia
https://flutter.io

Feature Phone Platforms
While smartphones generally get the most news coverage, in
some parts of the world feature phones are still pretty relevant.
Even on a global level 22% of all phones sold have still been
feature phones in Q1 201624, with an install base much higher
than that. However, Android is increasingly taken over the low-
cost handset market so the future of this platform looks dim.

The big players in the feature phone market also had to
realize this: Nokia shut down their feature phone app store in
2015.

While you can develop native apps for feature phones when
you have close relationship with the vendor, you typically
develop apps using Java ME or BREW for these phones.

24 www.statista.com/statistics/617945/feature-phone-smartphone-share-of-
global-mobile-phone-sales

The Galaxy of Mobile: Past, Present and Future13

https://www.statista.com/statistics/617945/feature-phone-smartphone-share-of-global-mobile-phone-sales/
https://www.statista.com/statistics/617945/feature-phone-smartphone-share-of-global-mobile-phone-sales/

Flamewars

As developers, we tend to have a passion for our chosen
darlings. However, let us not forget that these technologies are
just that - technologies that are relevant at a given time and
in a given space, but not more. Yes, flamewars are fun but in
retrospect, they are always silly. Hands up those who fought
about Atari versus Amiga back in the good ol' 80s! Probably
not many of you but, surely, you get the point. Initiatives
such as FairPhone25, ShiftPhone26 or the GuardianProject27 may
prove more important than the OS or vendor of your choice in
the future.

If you are lost in the vast space of mobile development, do
not worry, stay calm and keep on reading. Go through the op-
tions and take the problem that you want to solve, your target
audience and your know-how into account. Put a lot of effort
into designing the experience of your service, concentrate on
the problem at hand and keep it simple. It is better to do one
thing well rather than doing 'everything' only so-so. Invest in
the design and usability of your solution. Last but not least,
finding the right niche is often better than trying to copy
something that is already successful. This guide will help you
make an informed decision!

25 fairphone.com

26 shiftphones.com

27 guardianproject.info

The Galaxy of Mobile: Past, Present and Future14

http://www.fairphone.com
http://www.shiftphones.com
https://guardianproject.info

From Idea to Prototype
What makes a service successful? Why do so many start-ups
fail, often despite their technological superiority? Why do so
many products seemingly get to a point where they are stuffed
with features that have little use, yet eat up considerable
development and maintenance time?

One of the biggest pitfalls in product development is
failing to understand what your customers use your product
for in their lives. Not knowing what progress your customers
are trying to make can lead your team to build the wrong or
over-engineer the correctly scoped product. This might seem
paradoxical at first. It would be completely reasonable to
expect that companies would not invest into features that will
be used sparsely or not at all.

Unfortunately, start-ups and established companies alike
lack a process to analyze the reasons why customers hire their
product and decide what to build next based on nothing more
than some sort of “best-practice-remixing” of the competitors’
successful features. Failing fast is misinterpreted as a goal in
itself, forgetting that recovery from failure can be difficult and
pivoting needs to be learned.

It is in every team’s interest to do their best at their first
shot and so it is helpful to explore methods that allow you to
uncover the most about your customers’ contexts, motivations
and struggles with as little investment as possible before you
start building.

In this chapter we will explore:

 — Why people hire new products
 — How to conduct pragmatic customer research to frame your

B
Y

 A

nd
re

j B
al

az

From Idea to Prototype16

product’s value proposition and discover what to build and
what not to build.

 — How to formulate insights and align your team around the
progress that users are trying to make.

 — How to prototype and test your ideas by involving your
customers at every step

At the end of the chapter you will be equipped with a
powerful perspective and a set of tools that will help you on
your next endeavor to start building a service that customers
will value.

Why do people buy products?

People do not buy products, they buy better versions of
themselves.

In order to explain what this means, consider this example:
Remember the last time you purchased wine to serve it

to your friends. How much did you know and care about the
wine’s properties and features such as vintage, grape, price
etc.? If you are not a wine expert, I am sure the context of the
upcoming meeting with your friends played a more important
role in your decision than the individual features of the wine.
The price and grape might have come up in your mind but the
region and vintage probably did not influence your decision
much. You might have simply selected a dry wine because you
know that is what adults drink. Depending on the strength of
your desire to impress your friends, you might have selected
wine in a wine store to make sure you are serving something
respectable to your friends. Or you might have visited the
supermarket to simply get more of it — you know, to get the
conversation rolling.

From Idea to Prototype17

No matter what the case, you selected the wine based
on your desire to be a better host in that given situation.
To speak in a software analogy, you wanted to update the “ver-
sion” of the host you were before. The attributes of the wine
only played a role if you were able to connect them to this
purpose in your mind. The wine helped you to “progress“, you
hired it for the job of making you a better host.

Accordingly, when you interview a customer about a
product, they will rarely talk about the product itself but what
they do with it. They hire the product to make progress in
their lives, not because of its features or attributes. And this
urge to make progress arises when they encounter a situation
where their current state is not good enough. We describe this
condition and desire for progress as a Job to be Done1.

Progress is not only functional.
It is important to note that when describing customer

progress and the jobs they are hiring products for, it is not suf-
ficient to think only in functional terms (What I can do with
this). The wine from our previous example certainly needed to
meet a certain standard to help you stand out as a good host,
yet being a better host describes a mostly emotional and social
struggle. You tried to impress your friends and feel appreci-
ated. Because most human decision-making and motivation
is ultimately emotional, framing how your product helps your
customers to improve always includes an emotional dimension
(How I want to feel and how others should think of me).

1 To learn more about the Jobs To Be Done innovation perspective, read this
free ebook by Alan Klement: www.whencoffeeandkalecompete.com

From Idea to Prototype18

Customers do not see competition in the same way many
organizations do.

When customers experience that something is not good
enough and start looking for something better, they consider
a variety of solutions that might deliver the desired progress.
The term solutions may refer to products and services, but it
also includes behaviors, workarounds, a combination of the
latter — sometimes even — doing nothing. Following on our
wine example, a party host who is interested in entertaining
his guests might consider hiring wine, telling friends to bring
their own favorite drinks or not hiring drinks at all and hiring
a DJ instead.

Notice how the customers consider solutions outside of
a particular product category (e.g. alcoholic beverages) and
how this perspective differs from a traditional way to look at
competition. When challenged with innovation, companies
often focus on their closest competitors (beer, soft drinks,
other wine producers) and end up remixing the competitors’
best features into one-size-fits-all solutions. Failing to ac-
knowledge that this approach often leads to over-engineering
good enough solutions, companies become blind to disruptive
efforts from other markets.

By embracing the view that customers are hiring solutions
to progress and get a job done and not because of their
features and functionality, you enable your team to innovate
more freely and learn to categorize the market in the way your
customers do. As a wine producer, you might incorporate your
primary product (wine) into a service ecosystem that helps
your customers to become knowledgeable and fun party hosts.

From Idea to Prototype19

From Idea to Prototype

Why do people buy a certain product?

We have established that it is desirable to concentrate on
helping your customers to become better versions of them-
selves when building new products. But how do you find out
how this better version looks like? How do you find out which
job your customers are hiring your product for?

The most pragmatic way to uncover what motivates people
to progress is to research their shopping and decision-making
behavior. As customers switch from one product to another,
they shape what is important to them. Their emotional,
physical and social circumstances influence what tradeoffs they
are willing to make, what features they consider important,
what solutions they consider and what that better life with a
new solution might look like. Understanding your customers'
switching journey provides an excellent foundation for your
product strategy:

Think about your last larger purchase, for example a
mattress2. I am sure that you took some time thinking about
which model or type you should buy and that various situa-
tions, people and emotions influenced your journey to a new
mattress. You might have seen the same mattress at your
friend’s house or have one day woken up with a terrible back
pain that did not go away for the whole day.

2 http://jobstobedone.org/radio/the-mattress-interview-part-one/

From Idea to Prototype20

http://jobstobedone.org/radio/the-mattress-interview-part-one/

With every new purchase or behavior change, people go
through a complex process of decision-making that is not only
influenced by functional requirements but is also surrounded by
plenty of emotional energy.

We can describe this energy with the help of a simple tool
called the “Forces of Demand Diagram“ that you can see below.

There are two forces that move the customer from the old
solution to hiring a new product, the PUSH of the current
situation and the PULL of the new solution. These forces are
accompanied by two progress-blocking forces at the bottom of
the diagram, the ANXIETY of the new solution and the HABIT
of the present.

These forces can be explained in the following way:
Push: The push describes the need to make my current

situation better. The leading thought here is: “What I have is
not good enough. ”It describes all the struggles and situations
which stir people up to look for change.

In the mattress journey, this might be the terrible back pain
caused by the old mattress or the purchase of a new, wider bed
frame that you need to fill.

Pull: The other driver of progress, the pull, is created by

PUSH
OF THE SITUATION

YOU

PULL
OF THE NEW SOLUTION

ANXIETY
OF THE NEW SOLUTION

HABIT
OF THE PRESENT

From Idea to Prototype21

the new solution that your customer imagines. This new idea,
as symbolized by the light bulb in the diagram, is a fantasy
created in the mind of your customer about how much better
his or her life might look after the purchase of the new product
or service. It is created by your product’s marketing, the
customer’s social environment etc.

The customer might need to see and touch the mattress
before buying it or quite the opposite, she might just buy it
based on a recommendation without ever touching or lying on
the mattress at all.

The pull is led by the thought: “Can this help me to make
progress and get the job done better?”

Anxiety: Every consideration and fantasy of a new way
(pull) is accompanied by progress-blocking anxieties. The
purchase might be too expensive, the handling too difficult,
the barriers of purchase too high.

You might have purchased a mattress a few months back,
which will probably block you from investing a large sum
again.

We might think: “Is this too expensive?” or “Will my partner
support it?”

Habit: The “What I have right now, is good enough”

From Idea to Prototype22

thought is probably the strongest hurdle that your product or
service must overcome. If people are familiar with their solu-
tion or if the necessity to change is not large enough, people
will not switch.

Understanding the anxieties experienced by your customers
is a very important aspect of user research. Lowering them
in consequence remains one of the most effective ways to
increase demand.

Similarly, you could invest in letting your customers know
about the negative aspects of their current situation and thus
increase the push forces (insurances do this all the time).

Whatever your approach, once the moment is reached when
the progressive forces are stronger than the progress-blocking
forces, the customers will switch. The trade-offs are made
in the mind of your customer, the positives overweight the
negatives and money is put down on the table.

Switch interviews

Talking to customers who have switched to your product is
an effective way to uncover why your customers hired your
product. In this chapter, we will look at how to conduct these
interviews. Mastering this technique will help your team to
frame the design problem for your service and spot valuable
innovation opportunities.

To understand how trade-offs were made and what forces
were in play you need to understand what events happened
in the purchase journey of your customer that led him to
his decision. Recording the story that people went through
on their way to your solution will almost universally reveal

From Idea to Prototype23

unexpected information, especially because no decisions are
entirely rational3.

Switch interviewing is all about getting the story of your
customers’ progress on record, understanding all the causes
and moments that led to purchase.

You start your interview by asking questions about the
moment the customer purchased your product (The Switch).
During the interview you retrace the story from the switch to
the first thought, when your customer thought that what she
has was not good enough anymore.

On the way you will often discover how complicated and
unexpected some buying decisions were, broadening your
understanding of the progress your customers are trying to
make and their behavior.

To help you with this retrospective interviewing process, we
will use a second tool: The Timeline.

3 http://5by5.tv/criticalpath/146

FIRST
THOUGHT

EVENT
ONE

PASSIVE
LOOKING

ACTIVE
LOOKING

CONSUMING
YAY OR NAY

DECIDING

EVENT
TWO

What I have
might not be

working
anymore.

I‘ve had enough.
This needs to

get solved.

If I don‘t get this
solved by a

certain time, it‘s
not going to be

good.

I‘ve paid money.
There is no going

back. I‘ve
comitted.

I‘ve used it for a
while and I

understand if it
does the job or not.

I‘ve narrowed my
options to two or

three. I understand
my criteria.

I‘m investing
energy and time

into finding a
solution.

I‘m not putting in
any real energy, but

I start noticing
options and
imagining.

BUY NOW

From Idea to Prototype24

The First Thought: Once your customer wakes up with
the realization: “What I have is not good enough. I might
need to make progress.” the decision-making process begins.
During the interview, it is one of your goals to try to find out,
when, and most importantly, under what circumstances this
thought occurred. Sometimes, negative experiences might
have triggered these thoughts, sometimes your customer might
experience your product at a friend’s house and be pulled to it.
Either the case, from this moment on your customer starts to
be sensitive to new solutions.

Passive Looking: In this phase your customers are increas-
ingly sensitive to possible options that might help them to get
their jobs done better. They do not make trade-offs yet, nor do
they narrow down their selection strongly. They do not put any
real energy into the looking process yet, they remain in fantasy
land. Considering the mattress again, you might think: “If I ran
across a great, new mattress for little money, and they would
deliver it to my doorstep, I’d get it right away.”

Event One: Usually at some point, something happens that
makes you start looking more actively: “This needs to get
solved. I cannot continue like this.”

In my personal mattress journey, a friend of mine has got a
slipped disk. This definitely made me to look for new alterna-
tives to my own, not so good mattress.

Active Looking: Once your customer is investing some real
energy into looking for solutions, for example by browsing web-
sites, visiting stores or asking friends for recommendation or
information, the trade-offs are formed and the most important
decision criteria crystallize. This is when your customers’ value
proposition is formed.

Event Two: More often than not, as you dig deeper in your
interview, you might discover a pretty discrete and decisive
moment, when the customer suddenly feels pushed to action

From Idea to Prototype25

again. “If I do not get this solved by a certain time, it is not
going be good”. It might be a conflict with a partner about
the back-pain-fueled-grumpiness in the mattress scenario or a
sudden drop in prices (Black Friday scenario).

Deciding: When the criteria are clear and trade-offs of
possible alternatives are understood, your customer usually
narrows down their options to two or three options. As men-
tioned earlier, finding out about this so-called consideration
set provides great insights about what your product is actually
competing with.

Buying: “I’ve decided and paid money. I will have to live
with my decision.” The buying process itself might be very
short or pretty long, depending on the nature of your service
or product. However, at this point most anxieties are overcome
or weakened and your customer gives your solution a real
chance. It is important to note that this kind of commitment
is usually not based on significant experience with the product.
Therefore, the customers’ understanding of whether the new
will replace the old and whether your solution fulfills the job is
only partial. True value is not created yet.

Consuming: In the weeks following the purchase, the
customers are no longer in love with their newly acquired
solution, have gathered some significant experience with it and
can more clearly judge whether the job is fulfilled in a more
satisfactory way or not. “I’ve used it and understand if it is
better or not. ”It is now that true value is created in the mind
of your customer.

Satisfaction: During consumption the customer comes to
realize if he or she is actually satisfied with the new product.
If not, this frustration might act as a forward-pushing force in
the consequent search for a better solution in near the future.

From Idea to Prototype26

Who to interview
It is important that you talk to people who have already
bought and used your product who have a somewhat fresh
memory of all the important tradeoffs and circumstances that
shaped their decision. Because people are prone to rational-
ize their (ultimately emotional) decisions, avoid talking to
customers who are only thinking to buy but did not commit
yet. Similarly, talking to people who got a product gifted will
not reveal any valuable insights — they simply did not spend
any energy thinking about it. You will use the story of the
shopping and decision-making process as a tool to identify
customers whose motivations have undergone the test of
reality, getting a clearer view on their actions as opposed to
their aspirations and beliefs.

As a guide: Interview customers who switched to your
product in the last 90–120 days. They will not be in love with
the brand-new product anymore and will have had time to
evaluate if they were able to reach the desired progress or not.

What if my product does not have customers yet?
It does not matter whether your product is already on the
market or not, or if it is a product, service, app or a feature.
While interviewing current customers is easier for beginners,
what you are after is the story of change. Once customers leave
their old way of doing things in order to progress (for example
starting to pay for premium features), they can be interviewed.
In case your product is not released yet, you can simply
interview people who switched to a competitor’s product. In
case you cannot think of any competitor or your app is free,
talk to customers who exhibit a new behavior that is in line
with the progress you are trying enable.

To give you an example: To create a new service that helps
people to become better hosts, you could interview people who

From Idea to Prototype27

hired wine, DJs, a cooking class or use a new recipe app and
see what motivated them. Be creative and sensitive to what
people do today to improve in a similar way or situation.

For further tips, please read this article on Medium:
jtbd.info/uncovering-the-jobs-that-customers-hire-products-and-
services-to-do-834269006f50.

Define the problem: Job Statement

After you have conducted 6–12 switch interviews, you should
be able to spot patterns emerging in the forces that shaped
the customers’ desire for progress. For further development it is
helpful to summarize these insights in a structured and concise
manner. This process will improve the communication with your
team and will help you to see which parts of your product are
essential and which you can abandon.

The job statement helps your team to establish a high level
vision for your project. It expresses what your customer is
struggling with and what job they desire to get done. It opens
up space for ideation by capturing insights into the customers
current state and motivation to progress. And it helps to shape
your product’s value proposition and aligning your company’s
strategy around a customer-centric purpose.

A job statement has two parts: 1. The situation in which a
desire for progress arises and the future, 2. Desired state once
the job is done and the progress has been made.

For a grocery shopping application, the job statement might
be: “Free me of the stress of looking for healthy ingredients
(STRUGGLE), so I can rekindle the fun of cooking for my family
(STRUGGLE IS RESOLVED).“

A job statement should not include any solutions or
features, otherwise it will limit your team’s creative potential.

From Idea to Prototype28

https://jtbd.info/uncovering-the-jobs-that-customers-hire-products-and-services-to-do-834269006f50
https://jtbd.info/uncovering-the-jobs-that-customers-hire-products-and-services-to-do-834269006f50

Consider this job statement that ignores this rule: “Deliver
groceries to my home, so I spare time shopping.“

The latter statement describes the functionality of a grocery
shopping app well, but it does not provide room for broader
thinking. Solutions, such as ready-made inspirational boxes
sold at the supermarket or recipe collections would not be
captured by it. Observe further how the goal of the second
statement is creatively limiting (“so I spare time shopping”).
“Sparing time” does not describe a desired future state, a
“new me”. It is an effect that might alleviate a problem people
experience that blocks them from having fun while cooking
(shopping takes time and is stressful), but it does not describe
how the life the customer would improve.

For further tips how to formulate your job statements,
consult the free book “When Coffee and Kale Compete” by Alan
Klement4.

Define Situations: Job stories

After having formulated a high level vision of your product us-
ing the job statement, you can now use Job Stories to describe
concrete struggling moments in your customers' lives. Job
stories provide your team with a way to capture concrete situ-
ations in which the customer starts to look for something new.
They capture all the different struggling moments, contexts,
anxieties, desires and emotions that you heard throughout
your interviews. You can use job stories to frame smaller design
problems to kick off the ideation process for an individual
product within the scope of a service or a particular feature.

Job stories explain how a particular group of customers
acted in a particular situation, what they were doing, what

4 whencoffeeandkalecompete.com

From Idea to Prototype29

http://www.whencoffeeandkalecompete.com/

effects a solution should have in their mind and in which
direction they wanted to progress. Let us have a look at an
example job story for a grocery shopping application:

When I feel bad about shopping ingredients for my children
that are not organic, because visiting multiple stores with my
small children is very exhausting,

I want a way to avoid having to shop at multiple locations,
so that I can serve my family healthy meals without trading

convenience for quality.
When… describes the situation in which a problem arises

and the person is looking for change. What happened?
I want to… captures the expectations that customers

have regarding the effects of a solution when they use it. The
solution itself or its features are not mentioned. What effects
does or does not the solution have in their mind?

So I can… describes what happens when the struggle
is solved. It describes how life will be when the solution is
effective in getting the job done.

If you are familiar with user stories, you will recognize that
job stories are fairly similar in their structure. The important
difference is that job stories attempt to tell a story of progress
instead of describing the needs of a particular persona towards
reaching a goal. The reason for this is the observation that
very diverse people can act similarly when they find themselves
in the same situation. Consider this example:

A wealthy business man has about 25 minutes to pass
security at the airport. He is hungry and sees that the line at
the checkpoint is pretty short. He figures that he can grab a
Snickers quickly to recharge before entering the nasty proce-
dure. He enters a kiosk, grabs the chocolate bar and pays. He
knows that a Snickers is not the best choice and goes against
the advice of his nutritionist, but he enjoys it anyway.

Now try to answer this question: Which elements of the

From Idea to Prototype30

story had stronger influence on his decision? That he was
wealthy, a businessman and is concerned his nutrition or that
he found himself in an airport with limited offerings and time
and an appetite for a quick bite? People quickly override their
stated preferences and attitudes when they are confronted with
a situation or social context that makes alternative behavior
more favorable. This is the main reason, why asking people
what they would do or what they want is such a risky activity.
People adapt. It is not who they are, it is where, when and
with whom they are that causes their behavior.

However, many software development teams work with
"personas", fictional characters representing certain segments
of their target group.

But as we discussed before, it is not who the customers are
in terms of their demographic and psychographic group, what
they state they want, how they look, where they live or what
brands their prefer which causes them to switch. While these
data can correlate with certain behavior, they do not cause it.
Context does. It is therefore to frame your customer insights
around situations and the behaviors and tradeoffs they cause,
not around personas.

That is why job stories offer an improved way to frame
insights into customer motivation and can be used as a foun-
dation in agile development processes. While going in-depth
on how to turn these insights into a complete product roadmap
would extend beyond the boundaries of this book, let us have
a look at a few helpful tools that help your team to frame what
you have learned and start building.

From Idea to Prototype31

 — If your team is used to working with personas, reduce
the amount of correlative data and focus on customer
motivation5.

 — Intercom offers free ebooks6 on topics such as product
management, jobs-to-be-done and starting-up. They also
provide a format called Intermission7 that can help you
kickoff a project. It is a project brief that tells a story of
a customer wanting to progress, a couple job stories and
ways to measure your team’s progress towards solving the
customer’s problem. To see how this works in real-life, read
their blog8.

 — Eric Ries and his Lean Startup methodology9 provide you
with a great toolkit and perspective in order to avoid
building features that customers will not use and ensure
that you do not miss opportunities for improvement as you
build. Ries recommends a scientific approach of formulat-
ing customer-centric hypotheses, building solutions and
prototypes as soon as possible, testing them quickly and
analyzing how customers react with the help of clear
metrics.

5 www.slideshare.net/AndrejBalaz/improving-personas-with-jobs-to-be-done

6 intercom.com/books

7 blog.intercom.com/accidentally-invented-job-stories

8 blog.intercom.com/how-we-build-software/

9 theleanstartup.com/principles

From Idea to Prototype32

https://www.slideshare.net/AndrejBalaz/improving-personas-with-jobs-to-be-done
https://www.intercom.com/books
https://blog.intercom.com/accidentally-invented-job-stories/
https://blog.intercom.com/how-we-build-software/
http://theleanstartup.com/principles

Define the Use Case: Customer Journey

Before you dive into building complicated prototypes or
drawing wireframes digitally, it is essential that you sit down
with a couple of sheets of folded paper or a block of long,
screen-sized post-its and attempt to sketch how your customer
will use your app.

Create a storyboard that captures the user’s physical
surroundings, who they are with and what they are interact-
ing with. If your service has more than one touchpoint, for
example if it enables customer to share a ride and both the
riders and drivers have an app, you need to think about the
interactions between these two people. Your goal is to get
the story and different interactions right. In this way you will
quickly notice and improve inconsistencies and get a feeling of
which portions of the customer’s journey are most challenging.

Pay special attention to what happens outside of the
screen’s boundaries. In some circumstances a customer cannot
hold their phone in a hand, for example when moving around
at airports with lots of baggage in tow. This will enable you to
open up your imagination to other forms of interaction. Think
about a bus service. It combines physical, as well as digital
touchpoints that together help reduce the customers’ anxieties
and guide them through the experience.

Create the User Interface: Prototypes and
Visual Design

When you understand how individual journeys fit together in
the bigger picture you can move into more defined design.

An interactive prototype is the best way to visualize and
evaluate your app’s interactions. It is usable enough to com-
municate the design, so you do not need to provide as much
documentation as you would need to annotate static images.
Your prototype can have visual design applied and look exactly
as it will after the implementation, or you can stay on the
wireframe level and focus on functionality and content.

It does not matter whether you have a big budget or are
working on a personal project over the weekend, having a fairly
complete prototype of your app is the best way to communi-
cate your concept and discuss it with others. The non-linear
narration of your apps should be self-explanatory at this stage.
Many prototyping tools allow you to experience your concept
on an actual device. Take the advantage of it.

Prototypes are usually developed before you spend time
on implementing code and pixel perfect design. An agreed
clickable walkthrough is a useful reference that teams can work
towards without risking going too much off track. It is also
great to user test prototypes and get external feedback on.

In terms of putting a prototype together there is no single
best solution. You can use whatever technique works for you.
From paper prototyping to using one of the specialized tools or
other applications that have the functionality to put clickable
journeys together. If you have coding skills, building an HTML
prototype is another good way to go. You can also rapidly
prototype on the existing app, it all depends on what approach
works for a specific project setup. In that sense everything can
be seen as a prototype until it is released.

From Idea to Prototype34

Google Ventures Design Sprint
The design sprint methodology by Google10 helps you to
develop a tested prototype for your service within 5 days. It
does require user research before you start, but if you followed
our suggestions so far, you should be equipped to start it
right away. In the beginning of the week you decide on scope
and the experience you want to design, then you progress to
ideation, sketching and building of a testable prototype. By
the end of the week you will have tested your idea with real
users, gathering invaluable feedback about your idea.

The Google Design Sprint will get you a good overview of
various helpful methods that you can apply to prototyping
and sketching. In the following section let us highlight a few
methods that will help you to transform your idea into a more
coherent concept.

Prototyping & Wire Framing tools
While paper should remain a truthful companion to your
design process all along the way, teams around the world have
spawned great prototyping tools that help you test your ideas
directly on the device and share it with others. They allow you
to further elaborate your ideas, test concepts quickly and work
on your devices. Below you will find a few tools that work well
together.

Quick prototyping with Sketch and InVision+Craft or Marvel
Sketch is a design tool for Mac that has become the de-facto
standard for designing user interfaces. Its community offers
hundreds of useful plug-ins and the Sketch keeps improving the
tool at a rapid pace.

Sketch is easy to learn and integrates well with tools such

10 www.gv.com/sprint

From Idea to Prototype35

http://www.gv.com/sprint/

as InVision or Marvel. The latter allow you to build lightweight
clickable prototypes that can be previewed directly on your
device, speed up your design process (especially thanks to the
many helpful real-data import features from Craft by InVision).

The prototypes are great for communication with your client
(if you have any) and early usability testing. Personally, I
recommend to make your designs interactive early on to spot
problems with the interaction flow. Viewing your designs on
your device is the only way to take the right visual design
decisions regarding type sizes, whitespace and many other
usability considerations.

 — Sketch: sketchapp.com
 — InVision: invisionapp.com
 — Marvel: marvelapp.com

High-fidelity prototyping with Framer, Principle
If you are looking into prototyping animated flows and
transitions that feel like the real thing, Framer will be your first
choice. While having a steeper learning curve, the CoffeeScript-
like programming language is as approachable as it can be.
If you prefer to leave code to other team members, Principle
provides you with a simple interface to make interactive
prototypes reality. It has its limitations when your prototype
requires many states, so be prepared to “fake” things a lot.
Both tools are well-documented and integrate well with Sketch.

 — Framer: framer.com
 — Principle: principleformac.com

Keeping specs and assets in order with Zeplin and InVision

From Idea to Prototype36

http://sketchapp.com
http://www.invisionapp.com
http://marvelapp.com/
https://framer.com/
http://principleformac.com/

Craft
When transferring your designs to development, exporting
of specifications and UI assets have been a painstakingly
time-consuming process. Zeplin, as well as InVision help in
this regard, allowing you to view information about margins,
color values, code snippets at one glance interactively. While
InVision Craft eliminates the need to spec designs, Zeplin goes
further by simplifying exporting of assets. Both tools allow
you to organize assets in helpful libraries that greatly improve
cross-team collaboration.

 — Zeplin: zeplin.io
 — InVision: invisionapp.com/craft

Windows: Affinity Designer, Adobe Experience Design
If you are on a Windows computer, your options are a bit
more limited, but you are not left alone. Affinity Designer is
an excellent program for graphic design which allows you to
create user interfaces as well. It is fast, cheap and supports
reusable components. If you are familiar with Adobe Illustrator
and Photoshop, you should feel right at home.

If you have the Creative Cloud subscription, you might give
Adobe XD a try. While still relatively young, it is faster than
any other Adobe application in creating and exporting clickable
UI prototypes while sporting an easy-to-use interface. It has
made great strides in catching up to Sketch, but it lacks its
community and plugin ecosystem.

 — Affinity: affinity.serif.com
 — Adobe Experience Design: www.adobe.com/products/

experience-design.html

From Idea to Prototype37

https://zeplin.io/
https://www.invisionapp.com/craft
https://affinity.serif.com
http://www.adobe.com/products/experience-design.html
http://www.adobe.com/products/experience-design.html

Visual Design
Unless you are building an app that uses a non-visual inter-
face, your app’s UI will rely on graphics. You probably clarified
conceptual aspects of user interface design in the sketching
and wireframing phase. Depending on the level of detail
you applied to your prototypes, you might also already have
thought about visual design details and implemented them. If
you have not: Do it now. As good as your idea might be: You
will probably not succeed if your app's visual appearance is
not attractive to users. Sometimes it is actually only the visual
appearance that makes an app successful.

But a well-polished visual design will not only improve your
UI’s aesthetic appeal, a well-executed branding enhance your
app’s functionality and reduces the learning curve for users by
providing visual cues.

Style consistency through the flow helps users make sense
of your UI and learn interactions faster. For example, if your
main action button changes color from screen to screen,
consider the impact on the users. Will they be confused? Will
they understand the reason behind the change? If the style
alterations are intentional make sure you are doing them for
usability reasons.

Similar to designing layouts and interactions on the
prototyping level, certain styling decisions might be informed
by specific platform guidelines. Your app can look very differ-
ent depending on which platform it was defined for. Make sure
that your design follows the recommended practices for font
use, standard icons and layout conventions. Again, see the
platform-related chapters of this guide to find more informa-
tion and links to specific resources.

Company branding in the UI can be applied in a non-
obstructive way so that users can concentrate on interacting
with your app. Use the background, controls color and maybe

From Idea to Prototype38

certain images or layout choices to achieve the brand's look
and feel.

Finally, the launch icon is the first impression visual element
that your app will be identified by and judged on. Make it look
good and easy to recognize.

User Testing

The best way to validate your interface concept is to show it to
users as soon as your work is representative enough to prompt
feedback. You do not have to wait until you have a finished
and polished product. Testing early can save you a lot of time
in the long term. It will expose concepts that do not work
early in the process. The more time you invest into developing
your designs, the harder it gets to let go of them and start
over. It is more difficult to accept feedback on something that
you considered almost done that on a clickable prototype that
you can update quickly.

Test your assumptions regarding interaction, visual design
and content as often as you can. It will help you to streamline
your design process, uncover problems quickly and generate
new ideas.

The best way to test your designs is to invite some users
over and watch them perform your testing tasks. You will
quickly see where they struggle and will be able to invite
stakeholders to sit in or watch a live recording of the test to
help your team members empathize with your customers. Typi-
cal user testing session is about an hour long. During that time
users that are unfamiliar with the product are asked to perform
certain tasks, usually around core functionality.

Here are some helpful tools that will greatly improve your
process:

From Idea to Prototype39

1. Build a testable prototype
2. Set up your hardware for recording. Use Reflector 211

and Quicktime or Lookback12 to record your screens and
cameras. Try to record the device and the user’s face for
later analysis

3. Print a short introduction for your participant. Imagine a
description similar in length and style to those in the App
Store. (Value proposition, short)

4. Print every task on a separate sheet for your participants
to read

5. Recruit participants and invite them. When searching
for people to interview it is good to refer to the original
personas descriptions and look for users that match those
profiles. Offering rewards makes it easier to find appropri-
ate candidates, but be careful when choosing them: You do
not want people to show up because they get money, you
need people that fit your target group and give you honest
feedback. So consider offering rewards that fit your target
group, e.g. a photo printing voucher if you are testing a
photo app.

6. Introduce yourself, clarify that there are no right or wrong
answers and that the person should think aloud. Let them
know that you want to hear everything they think when
they do something with your prototype. Mention that
the prototype is not complete and there might be some
unfinished parts. If they assume that the person that is
running the session is the author of the design, they might
feel cautious of giving critical feedback. Reassure them
that they are free to express their honest opinions. After

11 www.airsquirrels.com/reflector/

12 lookback.io

From Idea to Prototype40

http://www.airsquirrels.com/reflector/
https://lookback.io/

all, the only reason you arranged the testing session was
to get an independent feedback.

7. Let your participant read the introduction and then
perform all tasks

8. Do not lead users to any conclusions. Do not help them
out by revealing how things work (unless they cannot
figure it out and you cannot proceed with the session) and
word your questions in a non-interruptive way.

9. Give a reward to your participant
10. Discuss key insights directly after the test with your other

team members. What went well, what went bad, what was
surprising? As you progress through the tests with 4–8
participants, patterns will start to emerge.

For a more robust approach, use Lookback which allows
your users to participate in your test by simply downloading
an app to their device. Not only can you record what your
users are doing, you can choose to perform in-house tests, let
users perform the test on their own (unmoderated testing) or
jump into a live session with them (moderated testing). The
Lookback tools are thorough and easy to use and can spare you
lot of time and fiddling with your own setup.

If you want to spare time with recruiting and recording your
participants, you can use platforms such as usertesting.com
to facilitate your testing process. You will receive recordings
of your users as they are confronted with your prototypes and
tasks. The biggest advantage of usertesting.com is their large
pool of potential users, allowing you to recruit people from
different countries and demographics. While the recruiting
criteria do not allow you to select people based on their situ-
ations, struggles or switching behavior, being able to let your
tests run over the weekend is a great time-saver. The downside
is that your prototypes need to be more refined than in an
in-person test where you can moderate if something breaks.

From Idea to Prototype41

http://www.usertesting.com
http://www.usertesting.com

When you get feedback, you can reiterate your design
and improve the parts that were not quite complete or if the
feedback was good move on to the development phase.

If you are still exploring new areas and your own prototype
is not quite ready, you can run testing sessions on other apps
that have been already released. It can surprise you how much
others notice about the application that you might never have
thought of.

Keep Iterating and Learning

As you build your product, it is important that you test your
assumptions frequently. Not only will you be able to uncover
what works and what does not before committing large sums of
money and time to building the wrong features, you will build
empathy for your customers within your team.

Users, their motivations, struggles and circumstances
change continuously, so it is crucial to develop processes
within your company to gather feedback at various levels of
the creation process.

Successful innovation does not have to be guesswork, but
it will always remain a study of complexity. The sooner you
develop your own process of learning and understanding, the
sooner will you be able to qualify your customers’ feedback,
take better scoping decisions and find customers that will
value your efforts. On to the challenge!

From Idea to Prototype42

B
Y

 V

ik
ra

m
 K

ri
pl

an
ey

,
An

dr
é

Sc
hm

id
t

&
 D

an
ie

l B
öh

rs

Android

The Ecosystem

The Android platform is developed by the Open Handset
Alliance led by Google and has been publicly available since
2007. Its use by the majority of hardware manufacturers has
made it the fastest growing smartphone operating system
ever which today dominates the market: More than 86%
of all smartphones sold in Q3 2016 worldwide were based
on Android1, 80% of all professional mobile developers are
targeting Android2. The number of Android apps on Google Play
has surpassed 3 million in July 20173. Over 2 billion Android
devices have been activated so far4 which also includes
wearables, tablets, media players, set-top boxes, TVs, phones
and car entertainment systems.

Android is an operating system, a collection of pre-installed
applications and an application framework supported by a
comprehensive set of tools. The platform continues to evolve
rapidly, with the regular addition of new features every 6
months or so. The latest release is Android 8.0 Oreo, which was
just released. Android Oreo introduced a lot of interesting new
features (see below), some of which are introduced to tackle
one of the most discussed issues when developing for Android:
The system's fragmentation.

1 idc.com/prodserv/smartphone-os-market-share.jsp

2 sometimes among others, see the Developer Economics Report 2016, p7
available via developereconomics.com

3 www.appbrain.com/stats/number-of-android-apps

4 www.macrumors.com/2017/05/17/2-billion-active-android-devices

Android44

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.developereconomics.com
https://www.appbrain.com/stats/number-of-android-apps
https://www.macrumors.com/2017/05/17/2-billion-active-android-devices

The multitude of different devices by various manufacturers
and the fast progress of the platform itself leads to uncer-
tainty over whether or not your Android application will run
everywhere. In addition, the adaption of the latest OS version
is slower compared to other mobile platforms. However, today,
you will reach over 90% of the installation base if you decide
to target Android 4.4 or above5.

Data collected during a 7-day period ending on August 8, 2017.
Any versions with less than 0.1% distribution are not shown and devices without

Google Apps (like those from Amazon and many China-based manufacturers)

are not counted. All versions prior Android 4.4 were also excluded due to their

outdated nature.

5 developer.android.com/about/dashboards

Marshmallow 6.0
API: 23
32.2%

Lollipop 5.1
API: 22
21.8%

KitKat 4.4
API: 19
16.0%

Nougat 7.0
API: 24
12.3%

Lolipop 5.0
API: 21
7.4%

Nougat 7.1
API: 25
1.2%

Android45

http://developer.android.com/about/dashboards

Android Nougat
Android 7 "Nougat" was officially released in August 2016, with
the Nexus 6, 5X, 6P, 9, Nexus Player and Pixel C as flagship
devices.

Nougat introduced a split-screen mode for phones, as well
as a hidden, experimental multi-window mode. The notification
system was redesigned, the shade now being able to bundle
multiple notifications from the same app.

Nougat extends device battery life with an enhanced
“Doze” power saving mechanism. It also introduced “seamless”
updates on newer devices, switching between two partitions
and applying updates in the background (while the device is
still in use).

Google also added platform support for Vulkan, a high-per-
formance, low-level 3D-rendering API to supplement OpenGL.

In version 7.1, Nougat added support for Google’s Daydream
virtual reality (VR) platform, for use with its Google Daydream
View virtual reality headset.

Android Oreo
Android 8 "Oreo" is the most recent OS release. After four
developer previews, it got released and initially delivered
to Google's Pixel phones and the latest Nexus devices. This
version allows notifications to get snoozed and grouped into
channels. Also, more customization regarding sounds and
alarms are possible. There is a new picture-in-picture mode
which can e.g. be used for watching videos while using the
phone. The ability to utilize Neighborhood Aware Networking
(NAN) for e.g. data sharing, should increase the connectivity
possibilities within Android.

The updated Android Runtime (ART) provides an improved
performance and a more fine grain tuning of background activi-
ties of apps should provide a better battery life.

Android46

A new hardware abstraction layer called the “vendor
interface” separates low-level, hardware-specific code from
the Android OS framework – an important architectural change.
Due to this change vendors should be able to reuse most of
their code changes if a new version of Android gets released.
This is hopefully a huge step in the direction of faster and
more reliable updates.

Developers will be able to use a multi process WebView,
which will be guarded by Google Safe Browsing. This should
secure apps that use web content within their flows.

To reduce the workload for users, developers are able to use
the new Autofill Framework6 which will also support passwords
and credit card information in a secure manner.

Android Go
Android Go is basically a lightweight version of Android O,
designed to run on smartphones that have 1 GB or less of
RAM. Even apps on the Play Store will be optimized for these
lower-end devices mostly targeting emerging markets like India
or China.

Kotlin: It is Official
At the Google I/O 2017 keynote, the Android team announced
first-class support for the programming language Kotlin7.
Android Studio 3.0 now ships with Kotlin out of the box.
Named after the Russian island, Kotlin was initially developed
by JetBrains in Saint Petersburg in 2011. It is a concise, safe
and welcome modern alternative to Java. Compare it to Swift,
for example:

6 developer.android.com/preview/features/autofill.html

7 kotlinlang.org

47 Android

https://developer.android.com/preview/features/autofill.html
https://kotlinlang.org

Kotlin

var myVariable: Int = 41
val myConstant = 42 // type inference
fun greeting(name: String?, age: Int): String {
 val name = name?.capitalize() ?: "Stranger" //
 safe navigation and null coalescing operators
 return "Hello $name. You’re $age!" // string
 interpolation
}

Swift

var myVariable: Int = 41
let myConstant = 42 // type inference
func greeting(name: String?, age: Int) -> String {
 let name = name?.capitalized ?? "Stranger" // safe
 navigation and null coalescing operators
 return "Hello \(name). You’re \(age)!" // string
 interpolation
}

Material Design
During the Google I/O conference in June 2014, Google
unveiled their new design language based on paper and ink,
named Material Design. Originally codenamed Quantum Paper,
Material Design extends the "card" concepts first seen on
Google Now. Says designer Matías Duarte: "unlike real paper,
our digital material can expand and reform intelligently. The
material has physical surfaces and edges. Seams and shadows
provide meaning about what you can touch."

Perhaps for the first time, Material Design brought a strong,
consistent visual identity to the Android ecosystem, parallel
but distinct from iOS's flat design and Windows' Metro design.
To encourage a solid user experience and consistent appearance
of Android apps, Google provides a comprehensive documenta-

Android48

tion for the design language8 and a design guide for develop-
ers9. Going into the importance of color schemes, design pat-
terns, and the new Material design, the guide provides a great
orientation when building apps for the Android ecosystem.

Also in the latest version of Android is Material Design
utilized to build the UI and the system apps. Additionally, a
variety of libraries brought support for material design to
different other platforms, like the web. Third party developers
started to adapt the design concept within their own solutions.

Android Wear
Android Wear10, launched in 2014, is basically the Android OS
ported to smartwatches and other wearable devices, which can
pair with phones running Android version 4.3 or newer (there
is some limited support for pairing with an iPhone). Wear
devices integrate Google Now and the Google Play Store.

A key feature is the Google Fit ecosystem of apps that sup-
port run and ride tracking, heart activity, step-counting, etc.
Users can use their watch to control their phone – music, for
example. Notifications via the vibration engine are another key
element. Those can be used for notifications from Google Now
like flight reminders, traffic warnings, meeting reminders, etc.

Android TV
Android TV11 is a successor to Google's previous smart TV initia-
tive, Google TV. Android TV is designed to be built into TVs as
well as standalone digital media players. Several TV manu-
facturers, including Sony, Sharp, and Philips, have integrated

8 google.com/design/spec/material-design

9 developer.android.com/design

10 developer.android.com/training/building-wearables.html

11 android.com/tv

Android49

http://www.google.com/design/spec/material-design
http://developer.android.com/design
http://developer.android.com/training/building-wearables.html
http://www.android.com/tv

Android TV into their screens today. Users can download apps
and games from the integrated Play Store, including media
apps like YouTube, Hulu, and Netflix. Some devices also include
direct support for the Chrome Cast Receiver. Users can mirror
their screen or stream content directly from their phone or the
web to the device.

Android TV apps use the same structure as those for phones
and tablets. Developers can thus leverage their existing apps
and knowledge to target the TV platform. See developer.android.
com/tv to learn how.

Getting Started

The main programming language for Android is based on Java.
But beware, only a subset of the Java libraries and packages
are supported and there are many platform specific APIs that
will not work with Android. You can find answers to your "What
and Why" questions online in Android's Dev Guide12 and your
"How" questions in the reference documentation13. Furthermore,
Google introduced a section in their documentation called
"Android Training"14 that helps new developers learn about
various best practices. This is where you can learn about basics
such as navigation and inter-app communication, as well as
more advanced features such as intelligent Bitmap downloads
and optimizing your app for better battery life. Experienced
developers are able to acquire the Associate Android Developer
Certification by Google15 since February 2017.

12 developer.android.com/guide

13 developer.android.com/reference

14 developer.android.com/training/index.html

15 developers.google.com/training/certification/

Android50 50

http://developer.android.com/tv
http://developer.android.com/tv
http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/training/index.html
https://developers.google.com/training/certification/

To get started, you need the Android SDK16, which is avail-
able for Windows, Mac OS X, and Linux. It contains the tools
needed to build, test, debug and analyze apps. Development is
done within an adapted version of the IntelliJ Idea17 IDE. This
Tool is called Android Studio18 and allows beside developing,
also automatic building, syntax checking and testing.

IDE support
Android Studio is the official IDE for Android and comes
directly with Gradle Support and many features explicitly
tailored to Android development. It is available as pre packed
download including the Android SDK. An extended feature list19
as well as an end user documentation20 can be found on the
official Android Studio website. Android Studio itself comes
with example code and provides code documentation for all
system classes and methods available.

Native development
The Android NDK21 enables native components to be written
for your apps by leveraging both JNI for invocations of native
methods and using native subclasses that offer callbacks to its
non-native pendants. This is important for game developers
and anyone who needs to rely on efficient processing.

16 developer.android.com/sdk

17 jetbrains.com/idea

18 developer.android.com/studio/index.html

19 developer.android.com/studio/index.html#features

20 developer.android.com/studio/intro/index.html

21 developer.android.com/tools/sdk/ndk

Android51

http://developer.android.com/sdk
https://www.jetbrains.com/idea/
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html#features
https://developer.android.com/studio/intro/index.html
http://developer.android.com/tools/sdk/ndk

Implementation

App Architecture
Android apps usually include a mix of Activities, Services,
BroadcastReceivers and ContentProviders; these all need to
be declared in the application's manifest. The manifest also
includes the metadata of an application, like the title, version
and its required permissions.

An Activity is a piece of functionality with an attached
user interface. A Service is used for tasks that run in the
background and, therefore, are not tied directly to a visual rep-
resentation. A BroadcastReceiver handles messages broadcast
by the system, your own or other apps. A ContentProvider is
an interface to the content of an application that abstracts
from the underlying storage mechanisms, e.g. SQLite.

An application may consist of several of these components,
for instance, an Activity for the UI and a Service for long-
running tasks. Communication between the components is
achieved by Intents or remote procedure calls handled by
Android Interface Definition Language (AIDL).

Intents bundle data, such as the user’s location or a
URL, with an action. These intents trigger behaviors in the
platform and can be used as a messaging system in your app.
For instance, the Intent of showing a web page will open the
browser. A powerful aspect of this building block philosophy is
that any functionality can be replaced by another application,
as the Android system always uses the preferred application
for a specific Intent. For example, the Intent of sharing a web
page triggered by a news reader app can open an email client
or a text messaging app depending on the apps installed and
the user’s preference: Any app that declares the sharing Intent
as their interface may be used.

Android52 52

The user interface of an app is separated from the code
in Android-specific XML layout files. Different layouts can be
created for different screen sizes, country locales and device
features without touching the Java code. To this end, localized
strings and images are organized in separate resource folders.
Of course, you are also able to define and design layouts in
code or make use of both strategies to enable dynamic UI
updates.

The SDK and Plug-Ins
To aid development, you have many tools at your disposal in
the SDK, the most important ones are:

 — android: To create a project or manage virtual devices and
versions of the SDK.

 — adb: To query devices, connect and interact with them
(and virtual devices) by moving files, installing apps and
alike.

 — emulator: To emulate the defined features of a virtual
device. It takes a while to start, so do it once and not for
every build.

 — ddms: To look inside your device or emulator, watch log
messages, and control emulator features such as network
latency and GPS position. It can also be used to view
memory consumption and kill processes. If this tool is
running, you can also connect the Eclipse debugger to a
process running in the emulator. Beyond that, ddms is the
only way (without root-access) to create screenshots in
Android versions below 4.0.

These four tools along with many others, including tools to
analyze method trace logs, inspect layouts and test apps with
random events, can be found in the tools directory of the SDK.
If you are facing issues, such as exceptions being thrown, be
sure to check the ddms log or use the logcat mechanism.

If you are using features such as Fragments22 for large
screens, be sure to add the corresponding Support Library
packages from Google. They are available through the SDK
+ AVD Manager or since latest changes also via the Google

22 developer.android.com/guide/topics/fundamentals/fragments.html

Android54

http://developer.android.com/guide/topics/fundamentals/fragments.html

Maven repository23. They enable developers to deploy modern
features on older Android Versions without compatibility
issues. Be sure to use the v4 packages in your apps to provide
maximum backward support. There is also a version for Android
2.1 and above called v7 appcompat library that introduces a
way to implement the ActionBar pattern and more as docu-
mented online24.

Developing your application against Android 3.1+ will
enable you to make homescreen widgets resizable, and connect
via USB to other devices, such as digital cameras, gamepads
and many others. Android 4.X releases introduced further in-
teresting features such as expandable notifications, lockscreen
widgets, and a camera with face detection. The Material Design
UI Toolkit was introduced with Android 5.0 and introduces
new widgets and more to use in phones, wearables and other
platforms. The native computing framework, Renderscript no
longer provides direct graphic rendering capabilities but may
now be used for heavy processing instead.

There are also support libraries dedicated to specific areas
of Android. The Design Support Library provides navigation
enhancements and the floating action button for older versions
and the Vector Drawable Library + Animated Vector Drawable
Library add support for different vector formats.

To provide some backward compatibility for devices with
older Android versions, Google began to use the Google Play
Services framework25 which gets updated via the Play Store
and adds libraries such as the latest Google Maps. If you are
interested in authenticating users, you might want to have a
look at the Google+ Sign capabilities that bring the benefit of

23 developer.android.com/topic/libraries/support-library/setup.html

24 developer.android.com/tools/support-library/features.html

25 developer.android.com/google/play-services/

Android55

https://developer.android.com/topic/libraries/support-library/setup.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/google/play-services/

real user data to your app. The functionality is managed via
OAuth 2.0 tokens that allow the use of the Google account on
the user's behalf.

Testing

The first step in testing an app is to run it on the emulator
or a device. You can then debug it, if necessary, through the
ddms tool.

All versions of the Android OS are built to run on devices
without modification, however, some hardware manufacturers
may have changed pieces of the platform. Therefore, testing on
a mix of devices is essential. To get an idea of which devices
are most popular, refer to AppBrain's list26.

To automate testing, the Android SDK comes with some
capable and useful testing instrumentation27 tools. Tests can
be written using the standard JUnit format, using the Android
mock objects that are contained in the SDK.

The Instrumentation classes can monitor the UI and send
system events such as key presses. Your tests can then check
the status of your app after these events have occurred.
MonkeyRunner28 is a powerful and extensible test automation
tool for testing the entire app. These tests can be run on both
virtual and physical devices.

In revision 21 of the SDK, Google finally introduced a more
efficient UI automation testing framework29 which allows
functional UI testing on Android Jelly Bean and above. The

26 www.appbrain.com/stats/top-android-phones

27 developer.android.com/guide/topics/testing/testing_android.html

28 developer.android.com/guide/developing/tools/monkeyrunner_concepts.
html

29 android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html

Android56

http://www.appbrain.com/stats/top-android-phones
http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html

tool itself can be executed from your shell with the command
uiautomatorviewer and will present you the captured
interface including some information about the views pre-
sented. Executing the tests is relatively easy: After you have
written your test, it is then built via ANT as a JAR-file. This
file has to be pushed onto your device and then executed via
the command adb shell uiautomator runtest.

Since July 2017, the Android Testing Support Library is
available in version 1.0. This release provides new features
like multiprocess Espresso and support for the Android Test
Orchestrator. Multiple stability and performance improvements
are also worth noting.

Espresso30 provides a very lean API that helps to quickly
write procedural tests for your UI.

Open source testing frameworks, such as Robotium31, can
complement your other automated tests. Robotium can even
be used to test binary apk files if the app's source is not avail-
able. Roboelectric32 is another great tool which runs the tests
directly in your IDE in your standard/desktop JVM.

Your automated tests can be run on continuous integration
servers such as Jenkins or Hudson. Roboelectric runs in a
standard JVM and does not need an Android run-time environ-
ment. Most other automated testing frameworks, including
Robotium, are based on Android's Instrumentation framework
and will need to run in the respective JVM. Plugins such as the
Android Emulator Plugin33 enable these tests to be configured
and run in Hudson and Jenkins.

30 developer.android.com/training/testing/espresso/

31 code.google.com/p/robotium

32 robolectric.org/

33 wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

Android57

https://developer.android.com/training/testing/espresso/
http://code.google.com/p/robotium
http://robolectric.org/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

Building

Aside from building your app directly in the IDE of your
choice, there are also more flexible ways to build Android
apps. Gradle34 is now the officially supported build automation
tool for Android. There is also a Maven plugin35 which is well
supported by the community. Both tools can use dependencies
from different Maven repositories, for example, the Maven
Central Repository36.

Google ships libraries for Gradle as Android Archive (.aar)
files that can be obtained using the Android SDK Manager. You
are also able to package your own libraries or SDKs utilizing
the android-library plugin for Gradle. A great source for finding
Gradle-friendly Android libraries is "Gradle, please"37.

Signing

Your apps are always signed by the build process, either with
a debug or release signature. You can use a self-signing
mechanism, which avoids signing fees (and security).

The same signature must be used for updates to your app
- so make sure to not lose the keystore file or the password.
Remember: you can use the same key for all your apps or
create a new one for every app.

Google also provides a centralized solution for signing.
Google Play App Signing38 hands over a lot of the work to

34 tools.android.com/tech-docs/new-build-system

35 code.google.com/p/maven-android-plugin/

36 www.maven.org

37 gradleplease.appspot.com

38 developer.android.com/studio/publish/app-signing.html

Android58

http://tools.android.com/tech-docs/new-build-system
http://code.google.com/p/maven-android-plugin/
http://www.maven.org/
http://gradleplease.appspot.com/
https://developer.android.com/studio/publish/app-signing.html

Google's infrastructure and could reduce problems with manag-
ing and securing the needed keys.

Distribution

After you have created the next killer application and tested
it, you should upload it to Android's appstore called "Play" at
play.google.com/apps/publish.

You are required to register with the service using your
Google Checkout Account and pay a $25 registration fee. Once
your registration is approved, you can upload your app, add
screenshots and descriptions, then publish it.

Make sure that you have defined a versionName,
versionCode, an icon and a label in your
AndroidManifest.xml. Furthermore, the declared features
in the manifest (uses-feature nodes) are used to filter apps for
different devices.

One of the recent additions to the Google Play Store is
alpha and beta testing plus staged rollouts. This allows you
to do some friendly user testing before publishing the app to
all users. Furthermore, you can target specific countries and
devices by setting the right flags in the Developer Console
and export detailed statistics that help in understanding your
userbase. Using the inbuilt localization service, you can easily
add new languages to your app by paying a fee - make sure
to check the Localization Checklist39 for detailed information
about the importance of this topic.

As there are lots of competing applications in Android
Play, you might want to use alternative application stores40.
They provide different payment methods and may target

39 developer.android.com/distribute/googleplay/publish/localizing.html

40 onepf.org/appstores

Android59

http://play.google.com/apps/publish/
http://developer.android.com/distribute/googleplay/publish/localizing.html
http://www.onepf.org/appstores/

specific consumer groups. One of those markets is the Amazon
Appstore which comes pre-installed on the Kindle Fire tablet
family. But you should keep in mind that alternative play
stores force the user to enable unknown sources for app instal-
lation, which is always a potential security risk.

Adaptation

As the adaptation of Android increases, the vendor specific
ecosystem also been growing. That involves their own SDKs,
fully-customized Android versions and tools around topics
such as alpha and beta testing. This has both upsides, such
as a very tight integration that allows an amazing experience
for users, and downsides, such as increased fragmentation of
ecosystem. Vendor specific marketplaces often prohibit the
upload of generic apps that utilize utilities other than their
own.

One example is Amazon's Kindle Fire ecosystem which is ba-
sically a customized fork of Android and represents the Android
tablet with the biggest market share: Instead of using Google's
Play Services for enabling in-app purchases or maps, you have
to use Amazon's own libraries that offer similar functionality.
The reasoning behind it is pretty simple: Kindle devices are not
delivered with the required libraries to run Google's services.
Amazon also offers their own advertisement and gaming
services (comparable to Google Play Games) that help to target
your audience. Offering emulators for their different device
models, Amazon helps perfect your app by providing a realistic
environment. On top of the testing that Amazon offers for
their developer community, they also review any app that gets
uploaded to their Appstore.

Here is a little overview that can help you find the right
resources

Android60

Vendor Documentation

Amazon developer.amazon.com/fire-tablets

HTC htcdev.com

LG mobile.developer.lge.com

Samsung developer.samsung.com

Sony developer.sonymobile.com

Interestingly enough more and more vendors (e.g. Samsung
and HTC) have also started to offer vanilla Android versions
of their devices called "Google Play Edition". These devices
use the same hardware as the regular models but do not come
with any software customization. These devices are directly
distributed through Google's Play Store and offer bleeding
edge devices to users that want to stick to Google's experience.

In August 2017, Lenovo went a step further and announced
that they will discontinue their Android customization called
"Vibe Pure" and ship their devices with stock Android41.

Additional to the versions of the major manufacturers, the
Android Open Source Project (AOSP)42 offers an open source
version of the Android stack to create custom ROMs and port
devices to the Android Platform. Independent manufactur-
ers like Fairphone43 use AOSP to create their version of the
Android platform. The downside of this approach is missing
Google services like the Google Play Store as normally available
on mainstream Android devices.

41 gadgets.ndtv.com/mobiles/news/lenovo-k8-note-vibe-pure-ui-stock-
android-1733110

42 source.android.com

43 fairphone.com

Android61

https://developer.amazon.com/fire-tablets
http://www.htcdev.com
http://mobile.developer.lge.com
http://developer.samsung.com
http://developer.sonymobile.com/
http://gadgets.ndtv.com/mobiles/news/lenovo-k8-note-vibe-pure-ui-stock-android-1733110
http://gadgets.ndtv.com/mobiles/news/lenovo-k8-note-vibe-pure-ui-stock-android-1733110
http://source.android.com
http://www.fairphone.com/

Monetization

Google Play is the main distribution channel and of course the
most popular platform for Android app distribution. Google
charges you 25USD for the registration and a transaction fee of
30% of your earnings.

But the Play Store is not your only option- see the moneti-
zation chapter in this guide to learn more about the app store
landscape and its opportunities.

For the vendor specific ecosystems, such as Samsung Apps
or Amazon's Appstore, you should consider using their SDKs to
enjoy the benefits of optimized monetization.

In addition to selling an app in one of the many app stores
available, there are several different ways of monetizing an
Android app. One suitable way is by using advertising, which
may either be click- or view-based and can provide a steady
income. Other than that, there are different In-App Billing
possibilities such as Google's own service44 that utilizes the
Google Play Store or PayPal's Mobile SDK45 and Mobile Payments
Library46. Most services differ in transaction-based fees and
the possibilities they offer for example subscriptions, parallel
payments or pre-approved payments. If you are looking to
bring extra cool functionality to your app, you should consider
implementing card.io's SDK47 for camera-enabled credit card
scanning.

Be sure to check that the payment method of your choice
is in harmony with the terms and conditions of the different
markets you want to publish your app to. Those particularly
for digital downloads, for which different rules exist, are worth
checking out.

44 developer.android.com/google/play/billing/

45 github.com/paypal/PayPal-Android-SDK

46 developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/

47 card.io Android62

http://developer.android.com/google/play/billing/
http://github.com/paypal/PayPal-Android-SDK
http://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
http://www.card.io/

iOS
Ten years after the launch of the first iPhone, the side project
that rode on the success of the iPod when it first launched has
developed into one of the biggest successes in the history of
the tech industry with more than a billion units sold. When
the iPad was launched a few years later, in 2010, iOS became
a multi-device operating system and a major force in mobile
computing.

The iPhone upset the smartphone market when it was
released by introducing some unusual paradigms which exist
to this date, such as a multitouch screen without a physical
keyboard and direct interaction using gestures.

One of the driving forces behind the success of the iPhone
was the early adoption of apps by third-party developers. With
the release of iPhone OS 2.0 in July 2008, Apple opened up the
App Store with 500 apps - and the rest is history.

The Ecosystem Today

The popularity of developing for iOS is not losing any of the
momentum it established over the course of the lifetime of
the App Store. Total developer earnings from Apple's AppStore
have exceeded $70 billion by June 2017.1 Interest in Apple's
yearly Worldwide Developer Conference (WWDC) is at an all-
time high and a lottery is in place to decide who is assigned a
ticket.

1 www.apple.com/newsroom/2017/06/developer-earnings-from-the-app-store-
top-70-billion/

B
Y

 A

le
x

Re
pt

y

iOS64

https://www.apple.com/newsroom/2017/06/developer-earnings-from-the-app-store-top-70-billion/
https://www.apple.com/newsroom/2017/06/developer-earnings-from-the-app-store-top-70-billion/

iOS Install Base
In addition to selling over one billion iOS devices, a plus in
Apple's favor is the high adoption rate of each iOS version soon
after release. This allows developers to focus on the latest ver-
sion as a development target and not worry about supporting
a lot of devices on older versions, which has been a challenge
for Android developers. In fact, less than two months after the
launch of iOS 10 Mixpanel already reported an adoption rate of
around 72% of all iOS devices2 with 19% still on iOS 9, leaving
only 9% of devices running an older iOS version. Contrast this
with Android’s OS version 7.0/7.1 Nougat, which after ten
months has not managed to capture even 10% of the installed
base3. Android developers have to target a much lower API
level to capture a significant audience, which translates into a
much faster adoption of critical new features on iOS.

Devices Running iOS
One point that plays into the high adoption rate is that iOS
generally supports devices ranging back a few years - iOS 11,
for instance, still supports the iPhone 5s originally released in
2013. Usually, this means that developers need to have a few
devices available to test on different screen sizes and hardware
generations.

A detailed list of iOS devices, their capabilities and sup-
ported iOS versions can be found on Wikipedia4.

2 mixpanel.com/trends/#report/ios_10

3 developer.android.com/about/dashboards

4 en.wikipedia.org/wiki/List_of_iOS_devices

iOS65

https://mixpanel.com/trends/#report/ios_10
http://developer.android.com/about/dashboards
http://en.wikipedia.org/wiki/List_of_iOS_devices

The Architecture

Like most operating systems the iOS Architecture is defined
by layers of technologies to allow your application to run on
a device without communicat-
ing directly at the hardware
level. These technologies
can be thought of layers or
interfaces that are packaged as
frameworks that the developer
imports into their iOS projects
to leverage. The primary
framework developers interact
with, is called Cocoa Touch.

Cocoa Touch
While macOS and iOS are different operating systems, they
share a lot in common in terms of frameworks, developer tools,
and design patterns.

Apple leveraged and extended the main framework for
developing macOS apps, Cocoa, and added support for unique
features in iOS such as Touch gestures and named it Cocoa
Touch. Included in Cocoa Touch are frameworks to build GUI,
access device sensors like the accelerometer and perform
networking and data management tasks.

Core Se
rvice

Core OS

Media

Cocoa Touch

iOS66

Getting Started with iOS Development

Along with the SDK to develop for iOS, Apple also provides an
Integrated Development Environment (IDE) called Xcode to
create both iOS and OSX applications. As Xcode has evolved,
Apple has strived to provide all the needed tools to write, test,
monitor performance and deploy apps to the App Store all from
inside Xcode.

Development tools and paradigms change extremely
quickly on iOS, which is partially owed to the internal pace at
which Apple introduces new technologies, such as Swift and
partially owed to community interest. Several iOS adopters
have released comprehensive tools and frameworks targeted at
developers. For instance, as of 2017, one of the most pervasive
trends is to use tools like React Native which use JavaScript
and other web technologies to build an abstraction over the
native UI code.

Xcode
Apple released Xcode in 2003 for writing applications in OS X.
Version 3 of Xcode supported the first iPhone SDK in 2008 and
the most recent version is Xcode 9, just recently released with
iOS 11. Xcode is an integrated development environment used
during the whole application development life-cycle. Interface
Builder is a visual design tool used to design and wire together
views of the application without writing code and is integrated
with Xcode. Also provided is an iOS Simulator to allow develop-
ers to test their apps on all current devices without having to
always install apps on physical devices.

iOS67

Interface Builder
A lot of discussion in iOS developer circles is whether it is
better to use Interface Builder to visually design the UI and
application flow or to undertake it all manually with code. In
the past this may have been a personal preference but with
new devices and screen sizes like the Apple Watch and iPhone
X, the case can be made that Interface Builder is becoming
more essential. One of the primary differences between iOS and
Android development was not having to develop for several
device types and screen sizes. However, this line is becoming
more blurry with iOS 10 and 11 supporting eight different
screen sizes. Instead of supporting all of them separately
in your applications, Interface Builder uses concepts such
as Auto-Layout and Adaptive Layout to aid the developer
in supporting all screen sizes more easily. With each new
version of Xcode, Interface Builder has seen improvement and
advancement so it is apparent that Apple prefers developers to
take advantage of it. Something a new iOS developer should
consider.

Objective C
Objective C has it roots in the NeXTSTEP operating system
developed in the 1980s from where OSX and iOS are derived. It
is an object-oriented programming language that adds messag-
ing to the C Programming language5. In fact C and C++ can be
written alongside Objective C and some of the iOS frameworks
only provide a C level API to access. However, it has been criti-
cized for having a quirky syntax with a plethora of asterisks,
'@' signs, and square brackets which leads to a higher learning
curve for developers coming from modern languages such as
Java or C# while providing improved legibility through named

5 http://en.wikipedia.org/wiki/Objective-C

iOS68

parameters and verbose class and method names. Incremental
improvements have been added over the years including dot
notation of object properties, blocks, collection literals and
memory management via Automatic Reference Counting (ARC).
But the remaining need to use pointers, header files and
remain tightly coupled to the limitations and risks of the C
language has left Apple to conclude a new modern language is
needed.

Swift
In July 2010 Chris Lattner, Senior Director and Architect in
the Developer Tools Department at Apple began implementing
the basic language structure of a new programming language
whose existence only a few people knew of. It became a major
focus for the Apple Developer Tools group in July 2013 and
almost a year later at Apple's World Wide Developer Conference
(WWDC) Apple announced a new programming language for
iOS and OSX called Swift. Lattner stated Swift is influenced
by other languages such as C#, Ruby, Haskell, Python and
countless others6.

Apple felt the reason to create Swift was the need for mod-
ern language syntax that is more concise and easier to learn
for new iOS developers, including modern features like inferred
data types, data structure declarations, tuples, closures,
optional semicolons and no pointers. It has been suggested
Apple's support for Swift is to ensure iOS developers stay
interested in Apple's tools and do not look at other platforms
with modern language support for iOS development.

In early December 2015, Apple open-sourced Swift7 along
with a bunch of related tools, frameworks and examples. Apple

6 nondot.org/sabre

7 github.com/apple/swift

iOS69

http://nondot.org/sabre/
https://github.com/apple/swift

is actively engaging the community in the future development
of the language by soliciting feedback, proposals for new
language features and pull requests. Less than a week after
it was first open-sourced, Swift is already the #1 open source
programming language on GitHub8, overtaking other popular
languages like Ruby or PHP. In March 2017, Swift cracked into
the top 10 of the TIOBE index9.

Together with Xcode 9.0, Apple introduced Swift version 4.0.
While the pace of development has settled a bit and the direc-
tion of the language becoming more clear, different language
versions still neither have source nor binary compatibility.

Objective-C vs Swift
The question whether to start new projects using Objective-C
or Swift can be extremely tricky to answer, since there are valid
reasons to use either of the two languages at the current time.

In favor of Objective-C, there is the argument that the
language is extremely mature, all of Apple's APIs still feel like
they were designed to work with the language in mind - or
at the very least with C, which generally works really well in
conjunction with Objective-C. As opposed to Swift, Objective-C
offers excellent source and binary compatibility, so far that
projects from years ago still compile without any changes, or
only with minimal changes. On Swift, on the other hand, there
is a lot of cost involved in migrating the code to new versions
of the language. Debugging is also still much nicer in Objec-
tive-C with fewer bugs in the necessary tools. Many of Swift's
features, such as generics, were ported back to Objective-C, so
Apple is not really neglecting the language in any way.

8 github.com/showcases/programming-languages

9 www.cultofmac.com/471301/swift-is-already-of-the-worlds-most-popular-
programming-languages/

iOS70

https://github.com/showcases/programming-languages
https://www.cultofmac.com/471301/swift-is-already-of-the-worlds-most-popular-programming-languages/
https://www.cultofmac.com/471301/swift-is-already-of-the-worlds-most-popular-programming-languages/

On the other hand, Apple is clearly positioning Swift as the
future of development on their platforms, including iOS. APIs
are consistently updated to work better with the language and
feel less alien - for instance in/out parameters, such as for er-
ror handling. Some areas that still feel very bolted on in Swift,
for example NSCoding support for archiving, get cleaned up in
Swift 4 and even the required time for migrating between Swift
versions gets less with every passing release, partially owned
to better tooling support in Xcode.

Performance Tools and Testing
In addition to providing the tools to develop iOS applications,
Xcode also comes with tools for performance monitoring and
testing.

Instruments
Instruments allows developers to collect data about the

performance and behavior of their iOS apps over time. Some
of the common templates offered allow developers to track
memory leaks, or detect application "hot spots" using the
profiler instrument. The Automation instrument is used to au-
tomate user interface tests in your iOS app through test scripts
written by the developer. These scripts run outside of the app
and simulate user interaction by calling the UI Automation
API. It can be run on a device or simulator.

XC Test Framework
XCTest is the test framework integrated with Xcode to

provide extensive testing in an organized and efficient way.
By default, new projects created in Xcode using one of the
application templates will add a Test target to the project.
This allows the developer to write their own unit test classes,
execute them and analyze the results using the Test Navigator,
all from inside Xcode.

iOS71

Setting Up the Dev Environment
After registering for a free developer account at developer.apple.
com access is granted to download Xcode, sample code, videos,
and documentation. Requirements to run all Xcode tools is a
Mac computer running OS X 10.10 (Yosemite) along with the
iOS SDK. This setup will allow for the creation and testing of
iOS apps to run in the iOS Simulator. To submit apps to the
App Store you must upgrade the developer account at a cost of
$99 a year which also gives access to betas of future versions
of Xcode and iOS as they are released.

Distribution

The primary method for deploying apps to consumers is through
the App Store. Each app submitted is reviewed by the Apple
review team to ensure it meets the requirements and standards
set by Apple. This is a major difference from the Google Play
store for Android apps where Google does not review apps but
ensures they are code signed.

Apple is very strict on how 3rd party applications run on iOS
and uses the Sandbox technique to ensure application security
and tries to prevent nefarious or buggy code that could
compromise the OS, other applications or the device. Think of
a sandbox as a virtual barrier around the application that sets
the rules of what resources the app can access. For example an
application does not have access to another app's file directory
or system resources not accessed by the SDK frameworks. Apple
has given more control to the user to grant access to their data
(i.e. contacts, calendars, photos) or GPS location. Developers
must prepare for cases where the user has denied these type of
requests.

iOS72

http://developer.apple.com
http://developer.apple.com

Learning Resources

With the popularity of Apple's developer ecosystem comes a
multitude of learning resources in different formats to help a
new developer start coding for iOS, and a lot of them are free.
By taking advantage of these resources and others like them
the learning curve of mastering iOS development will lessen
considerably.

Websites and Blogs

 — Developer.Apple.com contains complete reference and
programming guides for developers to learn how to
develop iOS apps and class reference of all classes in their
public frameworks. The library website is organized by
Resource Types, Topics, and Frameworks plus the ability to
search. One important document to read before design-
ing the first app to be submitted to the app store is the
iOS Human Interface Guidelines10. It offers developers
recommendations on Apple approved ways to design apps
to ensure a positive user experience. Violation of these
recommendations will most likely lead to apps being
rejected by the App Store during review for submission.

 — Swift.org, the Swift community's official home
 — RayWenderlich.com has become an essential site for free

iOS tutorials written by his community of developers with
the goal being "to take the coolest and most challenging
topics and make them easy for everyone to learn - so we
can all make amazing apps." The site has expanded into
offering programming books and Video tutorials (with a

10 developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
MobileHIG

iOS73

http://developer.apple.com
http://swift.org
http://raywenderlich.com
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/

paid membership). Subscribe to their weekly Podcast for
the latest news relevant to developers and interviews with
leaders in the iOS developer community.

 — iOS.devtools.me is a website created by Adam Swinden
that he updates daily with the best iOS developer tools
and back-end services to help in developing apps. Content
is organized by categories (i.e Design, Graphics, Debug-
ging), most popular, and recently added. Also provided is a
weekly newsletter on the latest additions to the site.

 — iOSDevWeekly.com is a weekly round up of the best iOS
development links every week. Dave Verwer operates the
site and they offer a weekly email newsletter published
every Friday.

 — Galloway.me.uk, a blog by London based iOS developer/
author Matt Galloway. His book "Effective Objective-C
2.0"11 is highly recommended when ready to start learning
advanced features and tips on the language.

 — Merowing.info is a blog from developer/trainer/speaker
Krzysztof Zablocki who offers tutorials and insights into
iOS development from his experience as a consultant. He
also is active in the open source community creating tool
and libraries for iOS developers.

 — AshFurrow.com is another popular iOS blogger/developer
who proudly states the purpose of this blog is for "Explor-
ing the Pain Points of iOS." He has authored multiple iOS
development books, is an active speaker and involved in
the Open Source Community.

 — This Week in Swift is a weekly newsletter involving the
most interesting Swift-related news, developments, tutori-
als and general tidbits related to iOS development.

11 available via http://www.amazon.com/Effective-Objective-C-2-0-Specific-
Development/dp/0321917014

iOS74

http://ios.devtools.me
http://iosdevweekly.com
http://www.galloway.me.uk
http://www.merowing.info
http://ashfurrow.com
http://swiftnews.curated.co
http://www.amazon.com/Effective-Objective-C-2-0-Specific-Development/dp/0321917014
http://www.amazon.com/Effective-Objective-C-2-0-Specific-Development/dp/0321917014

Online Video Training
As a member of Apple's Developer program you get free access
to all of Apple's World Wide Developer Conference videos,
source code, and presentation files are available to download
and stream via the website or WWDC iOS app from the past
several years. Apple usually makes the videos available the day
after the presentation whereas previously it would take weeks
to be available after each year's conference.

Lynda.com currently offers over 70 video courses with paid
membership subscription for beginning iOS Development.
Source code for the projects are available to download depend-
ing on the membership level chosen. They also have a free app
in the App Store to watch videos on iOS devices.

One popular free resource for video training is offered by
iTunes University of a full semester course taught at Stanford
University on beginning iOS development. The lectures dive
deep into the Objective-C language and iOS Frameworks.
Viewers can even download the coding assignments. Videos are
viewed through iTunes or the iTunesU app for iOS devices.

Finally, YouTube has quite a few free videos for Learning
iOS development including a channel created by Mohammad
Azam12 that lists several screencast tutorials for iOS.

12 www.youtube.com/user/azamsharp

http://www.lynda.com
http://www.youtube.com/user/azamsharp

Final Thoughts

It is an exciting time to be part of the iOS Development
community and hopefully this chapter will prove helpful in
finding a starting point. To say things change quickly is an
understatement with all the new devices, frameworks and
services that have been launched in the past few years. But do
not get intimidated by the speed at which technology moves
inside Apple's ecosystem. Most of the basics in developing a
standard App apply now as they did in the first few versions
of iOS. Luckily there are countless resources available to get
started and grow your iOS development skills and most of them
are free.

Things to consider when getting started on your first iOS
"Hello World" App and beyond.

 — Does it make more sense to use Interface Builder for
designing the UI layout or to do it in code?

 — While using back-end services like CloudKit make develop-
ment easier am I locking myself too much into Apple's
architecture which would make developing an Android
version accessing same back end not possible?

 — What are the drawbacks of developing iOS apps outside of
Xcode (using cross-platform tools)? Is the user community
big enough to find answers to issues? How well do their
products keep up with the latest releases to iOS?

 — What is the environment like today for being a full-time
iOS Indie Developer?

Answers to these questions are beyond the scope of the
chapter but the resources above can help you navigate around
the pitfalls in iOS development quicker on the way to being an
experienced iOS Developer. Good luck and welcome to the club.

iOS76

Going Cross-Platform
With only Android and iOS as the main players, why should you
consider using a cross-platform development framework? In
this way even a small team can cater both platforms. And you
might even target other form-factors and media easily like PCs,
game consoles and websites.

Key Differences Between Platforms

If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier
to overcome than others:

 — Programming Language: Java & Kotlin for Android,
Objective-C and Swift for iOS

 — UI and UX: Style and interaction patterns differ on each
platform.

 — Desktop/Launcher Integration: On iOS you can only
add a badge with a number to your app’s icon, while on
Android you can add a full-blown desktop widget that may
display arbitrary data and use any visuals.

 — Lockscreen Integration: Again, there are various ways to
integrate on the lockscreen.

 — Multitasking: Android supports full background services,
to preserve battery. iOS only has limited support for
running apps in the background.

 — Fragmentation: The Android ecosystem is very fragmented,
iOS is a lot more homogenous.

 — Platform Services such as push, in-app-purchase and
in-app-advertisement differ on each platform.

B
Y

 R

ob
er

t
Vi

rk
us

Going Cross-Platform78

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Component libraries can help you to speed up native
development, there are many commercial and open source
components available for all platforms.

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

 — Concept and assets: Mostly you will do this automatically:
share the ideas and concepts of the application, the UI
flow, the input and output and the design and design
assets of the app (but be aware of the need to support
platform specific UI constructs).

 — Data structures and algorithms: Go one step further by
sharing data structures and algorithms among platforms.

 — Code sharing of the business model: Using cross platform
compilers you can also share the business model between
the platforms. Alternatively you can use an interpreter or a
virtual machine and one common language across a variety
of platforms.

Going Cross-Platform79

 — Complete abstraction: Some cross platform tools enable
you to completely abstract the business model, view and
control of your application for different platforms.

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Xamarin1 and
Lua2. This approach makes development very easy. You are
dependent, however, on the platform provider for new features
and the challenge here is when those features are available
on one platform only. Sometimes player concepts use a “least
common denominator” approach to the offered features, to
maintain commonality among implementations for various
platforms.

Cross Language Compilation
Cross language compilation enables coding in one language
that is then transformed into a different, platform specific
language. In terms of performance this is often the best cross
platform solution, however there might be performance dif-
ferences when compared to native apps. This can be the case,
for example, when certain programming constructs cannot be
translated from the source to the target language optimally.

1 xamarin.com

2 lua.org

Going Cross-Platform80

https://xamarin.com
https://www.lua.org

There are three common approaches to cross language
compilation: direct source to source translation, indirectly
by translating the source code into an intermediate abstract
language and direct compilation into a platform’s binary
format. The indirect approach typically produces less readable
code. This is a potential issue when you would like to continue
the development on the target platform and use the translated
source code as a starting point.

(Hybrid) Web Apps
Hybrid web development means to embed a webview within
a native app. The standard for hybrid apps is the open source
tool Apache Cordova3 (formerly known as PhoneGap). This
approach allows you to access native functionality from within
the web parts of your apps and you can also use native code
for performance or user experience critical aspects of your app.
Hybrid apps allow you to reuse the web development parts
across your chosen platforms. Read the web chapter to learn
more about mobile web development.

ANSI C
While HTML and web programming starts from a very high ab-
straction you can choose the opposite route using ANSI C. You
can run ANSI C code on all important platforms like Android,
iOS and Windows. The main problem with this approach is that
you cannot access platform specific APIs or even UI controls
from within ANSI C. Using C is mostly relevant for complex
algorithms such as audio encoders. The corresponding libraries
can then be used in each app project for a platform.

3 cordova.apache.org

Going Cross-Platform81

https://cordova.apache.org

Finding the Right Cross-Platform
Framework

For a benchmark of the available frameworks refer to the
research2guidance report available at research2guidance.com/
cross-platform-tool-benchmarking-2014.

Popular and interesting frameworks include the before
mentioned Cordova4 and Xamarin5 but also Corona6, Cocos2D7,
Flutter8, Unity9, NativeScript10, Sencha11 and Titanium12.

Here are some questions that you should ask when evaluat-
ing cross platform tools. Not all of them might be relevant to
you, so weight the options appropriately. First have a detailed
look at your application idea, the content, your target audience
and target platforms. You should also take the competition on
the various platforms, your marketing budget and the know-
how of your development team into account.

 — How does your cross platform tool chain work? What
programming language and what API can I use?

 — Can I access platform specific functionality? If so, how?
 — Can I use native UI components? If so, how?

4 cordova.apache.org

5 xamarin.com

6 coronalabs.com

7 cocos2d.org

8 flutter.io

9 unity3d.com

10 nativescript.org

11 sencha.com

12 appcelerator.com

Going Cross-Platform82

http://research2guidance.com/cross-platform-tool-benchmarking-2014
http://research2guidance.com/cross-platform-tool-benchmarking-2014
https://cordova.apache.org/
https://www.xamarin.com/
https://coronalabs.com/
http://cocos2d.org/
https://flutter.io/
https://unity3d.com/
https://www.nativescript.org
https://www.sencha.com/
http://www.appcelerator.com/

 — Can I use a platform specific build as the basis for my own
ongoing development? What does the translated/generated
source code look like?

 — Is there desktop integration available?
 — Can I control multitasking? Are there background services?
 — How does the solution work with push services?
 — How can I use in app purchasing and in-app advertise-

ment?
 — How does the framework keep up with new OS releases?
 — What's the performance of the solution?

Last but not least, for gaming using a cross-platform
solution is a no-brainer, as game creation is content-heavy and
games do not need to be integrated deeply into each platform.

Mobile Web
While the theme of this book is largely app-oriented, it
would not be complete without talking about the mobile
web. Indeed the line between apps and web is often blurred
in an ecosystem where apps can be built entirely with web
technologies, can pull their data and content in via web API
requests, or can act as simple app shells for what is essentially
a browser (WebView). It can be useful to think of a web-native
continuum, with native at one end and web at the other, and
various hybrid models in between.

The mobile web and native apps are often pitted against
each other as competitors. In many ways they are; often either
approach would be suitable to solve a particular problem. It is
easy, however, to get lost in the arguments; there are emphatic
and obsessive proponents on both sides.

But while apps and web are competing platforms, it is also
true that they are complementary platforms, each with it is
own set of strengths and weaknesses. We will not dwell on
the app versus web argument here. Rather we will view them
as complementary technologies, each with its own set of
strengths and weaknesses, which often overlap.

That said, with modern web features such as Device APIs,
push notifications, installable apps, 60 fps animations,
discoverability, the mobile web is a platform both capable and
formidable.

B
Y

 R

ua
dh

án
 O

'D
on

og
hu

e

Mobile Web86

Mobile Web Usage

The world has already reached the tipping point where more
time is spent on mobile than desktop. And while users spend
far more time in apps than on the mobile web, it can be
misleading to think that is the whole story. The mobile web
has a far larger audience than native apps.

Average Monthly Audience: Top 1000 Mobile Apps vs. Top
1000 Mobile Web Properties

(Data from the U.S., users aged 18+, source: comscore.com/Insights/

Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report)

Most digital strategies will touch the mobile web in at least
some way, if not embrace it wholesale.

2,000

4,000

6,000

8,000

10,000

12,000

Apps

Mobile Web

Jun-2014 Jun-2015 Jun-2016

+45%
vs. 2014

+82%
vs. 2014

Average Mothly Audience:
Top 1000 Mobile Apps vs. Top 1000 Mobile Web Properties

Mobile Web87

https://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2016/The-2016-US-Mobile-App-Report

Devices, Browsers and Fragmentation

The web today is mostly experienced through a browser
running on a desktop computer or mobile device. This is where
things things can get tricky for mobile developers: if you come
from a desktop web development background and thought that
developing and testing for all the various desktop browsers was
an arduous task, then you would better sit down; things are
considerably more complex on mobile.

There are at least as many mobile browsers as there are on
desktop. But on mobile, in addition to the browser(s) on the
device, we also have to consider the combination of devices
and their properties and capabilities. The types of properties
and capabilities that can impact web development include

 — Screen size properties such as physical dimensions,
aspect ratio, and pixel density

 — Input types such as keypads, touchscreens, styli,
microphones, and cameras

 — Spatial sensors such as GPS, accelerometors, compasses,
and gyroscopes

 — Network capabilities such as WiFi, 3G, LTE

This results in a staggering number of device-capability and
browser combinations that your visitors might be using. If you
want to provide a good user experience then ideally you want
your web pages to work on all device-browser combinations.
This is the scale of fragmentation problem facing web develop-
ers today.

Mobile Web88

What is a Web Browser Anyway?
The web browser is a central part of the web platform. It is a
complex piece of software with many roles. It orchestrates the
underlying web technologies, combining them into functional
web pages. It acts as a window and interface to the web for
the user, interpreting the users actions and inputs, and render-
ing its response in real time.

On top of all this the major browsers come bundled with
a set of complex developer tools, that provide deep insights
into the inner workings, structure and performance on any web
page that it renders. There are many developer tool features
that help specifically with mobile development. We will see
more about developer tools later in the Testing section.

When you build a web page, you are building something to
be consumed by browsers, and so you must be aware of their
capabilities, idiosyncrasies, and limits, especially on mobile.

Mobile Web89

Browsers and Rendering Engines
At the heart of every browser is a component that is respon-
sible for laying out and rendering the content of a page. This
is known as the rendering engine, or layout engine. Most
modern web browsers are based on a small number of rendering
engines.

Knowing what rendering engine a browser is based on can
help guide development and testing, since any browsers that
share the same rendering engine will often behave similarly:
they will generally support the same features, and at the same
time fall foul of the same bugs.

 — WebKit: the most widely used rendering engine today, it
was built by Apple in 2001 and open-sourced in 2005

 — Blink: in 2013 Google forked WebKit—which it had been
using—to create Blink, which is now used in Chrome,
Opera and Chromium based browsers

 — Gecko: open source engine used by Mozilla's Firefox
 — Presto: formerly used by Opera, and still used in Opera

Mini
 — EdgeHTML: used in Microsoft's Edge browser

Mobile Web90

What Browsers Should You Develop For?
One constant of the web is the ever-changing browser
landscape. Browser popularity will vary from market to market
and location to location. It is important that you have an idea
of the browser market share in your target market, so that
you can prioritize and optimize for these browsers. This said
however, you should also try to maximize browser compatibility
across the widest range of browsers where possible, since,
except for in very limited or constrained circumstances, you
will not know in advance what browser or device a user will
use.

Worldwide mobile browser market share June 2016-
June 2017 (source:gs.statcounter.com/browser-market-share/mobile/

worldwide/#monthly-201606-201706-ba)

Reports such as DeviceAtlas' Mobile Web Intelligence
Report1 provide periodic snapshots of the device and browser
landscape, highlighting interesting market share data such as
the most the most popular OSes, manufacturers, and screen-

1 deviceatlas.com/blog/most-used-mobile-browsers-q3-2016

0% 10% 20% 30% 40% 50%

Other

Android

Samsung Internet

Opera

UC Browser

Safari

Chrome 43,96%

18,01%

16,19%

7,67%

6,53%

5,17%

2,47%

Mobile Web91

http://gs.statcounter.com/browser-market-share/mobile/worldwide/#monthly-201606-201706-bar
http://gs.statcounter.com/browser-market-share/mobile/worldwide/#monthly-201606-201706-bar
https://deviceatlas.com/blog/most-used-mobile-browsers-q3-2016

sizes, and can help guide decisions relating to browsers and
browser targeting.

HTML, CSS, and JavaScript: the Building
Blocks of the Web

So far we have only covered devices and browsers. Now let us
look at the technologies that are used to build web pages:
HTML, CSS, and JavaScript.

HTML: Structuring Web Content
HTML is the markup language of the web. It is used to struc-
ture the content of a web page. Many variations have emerged
over the years. Early mobile markup languages include WML,
and XHTML Mobile Profile. The most recent iteration, HTML5,
has matured sufficiently to encompass semantic markup,
custom elements, and device APIs, and is well supported on
mobile web browsers.

CSS: Styling Web Content
CSS stands for Cascading Stylesheets, and is used to style and
lay out web content. CSS rules apply various properties, such
as color, to elements by targeting those elements with a selec-
tor. Selectors allow you to pinpoint any element or group of
elements in a page, so that you have full control: CSS can be
used for small styling tasks such as setting the color of text, to
large layout tasks that affect the entire page layout.

CSS has gone through multiple specifications, and is split
into many modules, each with its own specification, and cover-
ing diverse aspects of CSS from selectors to 3D transformations
and animations. CSS has become advanced enough that it can
often deliver sufficiently interactive experiences without the
need for JavaScript. Generally, for performance, you should

Mobile Web92

choose CSS over JavaScript for implementing interactions and
animations where possible.

CSS preprocessors such as LESS and SASS are often used to
extend CSS with operators and functions and other features
that improve the development process and promote code reuse
and maintainability.

CSS3 is well supported across the range of mobile browsers.

JavaScript: Client-side Scripting
JavaScript adds a programming layer to the web. It is used to
bring more complex interactions, animations, and functionality
to the web, and can be used to build web applications and
games.

Originally only a client-side scripting language, JavaScript
has grown and matured over the years as its underlying
ECMAScript specification has evolved. It is now backed by a
huge and vibrant community and a wealth of development
tools, and has gained respectability as a programming lan-
guage, and, through Node.js became available as a server-side
languages too.

Many thousands of JavaScript libraries have been developed,
as well as entire front-end frameworks for building entire web
apps, such as Angular.js, React.js, and Vue.js.

JavaScript libraries and frameworks can be a major source of
page bloat, causing poor performance and bad UX, particularly
on mobile. The mobile developer, therefore, should always be
wary of adding JavaScript libraries to a project without good
reason. We will see more about mobile web performance later.

HTML5

HTML5 is the most recent major version of HTML, and being
well supported on mobile, brings many new features that
enhance the mobile web user experience. But the term HTML5
refers to more than just the HTML markup language; it also
refers to related web technology specifications that includes
CSS3 and many useful JavaScript APIs.

Among the JavaScript APIs included in HTML5 are useful
browser features such as the Canvas element, Touch Events,
and Web Storage, to name a few. They also include device or
hardware APIs that are particularly useful in the context of the
mobile web. Device APIs give the browser access and control
of specific device hardware features, such as the camera, the
accelerometer, and GPS sensor.

HTML5 brings the browser closer to feature parity with
native apps—things that were once only possible via native
apps are now possible with the web. With location-based APIs
web apps can know where the user's device is; through sensor
APIs they can access camera images and compass bearings;
with storage and caching APIs they can work offline. Websites
can even send opt-in push notifications to users, even when
the website is not open. With HTML5 the web experience got a
whole lot richer.

Some of the more interesting HTML5 APIs from a mobile
perspective are described below.

 — Geolocation API: The Geolocation API gives access to the
geolocation capabilities of a device, which can include
precise location data based on the sensors of the device.
Location can can be based on the available sensors of the
device, and includes GPS, A-GPS, Wi-Fi, and cell-based

Mobile Web94

triangulation methods. Latitude, longitude, altitude,
heading, and speed data are exposed by the API.

 — Device Orientation API: Like the Geolocation API this API
returns information about a device's physical relationship
with the world. While the Geolocation API is concerned
with location in space, the Device Orientation API is
concerned with orientation. The information is based on
orientation sensors such as compasses, gyroscopes, and
accelerometers. The data exposed includes orientation in
three axes, acceleration, and rotation rate information.

 — Service Workers: Service workers allow webpages to
run scripts in the background. They can act as a proxy
servers to web pages, intercepting requests and generat-
ing responses, and so they facilitate offline capabilities,
background syncing, and push notifications.

 — Push API: Allows web pages to receive push messages
 — Notifications API: Allows a web application to display

native-like notifications. Together with the Push API and
service workers, web apps can send and receive asynchro-
nous push notifications to a device.

 — Web Payments API: Keying in credit card payment
information has always been a laborious task on the web,
but particularly so on mobile where input is more difficult.
The Web Payments API aims to solve this problem, while at
the same time removing the need to share your payment
details with any third-party ecommerce site of unknown
trustworthiness.

 — Touch Events API & Pointer Events API: These are two
APIs based around touch screen input, offering informa-
tion about touches, and swipes etc.

 — Media Capture API: Allows a web page to interact with a
device's media sensors such as microphone and camera to
capture audio and video.

Mobile Web95

Approaches to Modern Web Development

Modern web development practices must accommodate mobile
devices and address the fragmentation issues facing mobile
web developers. Several distinct approaches have emerged in
recent years, each approaching the problem in a different way.

Responsive Web Design
Responsive web design (RWD) is an approach to web design
that delivers resolution independent web pages—that is,
flexible pages that will work well on most screen sizes, from
desktop browsers to small screen mobile devices, and every-
thing in between. It is based on three techniques:

1. A flexible grid: ensures the page layout scales with screen
resolution, rather than using fixed dimensions

2. Flexible images: images that will scale within a flexible
grid

3. CSS media queries: applies CSS rules to distinct ranges of
resolutions or device classes, based on breakpoints

RWD became popular because a single HTML page designed
this way could be expected it to perform reasonably well on
wide range of devices. It is basically a one-size-fits-all solu-
tion, which carries advantages and disadvantages:

Advantages

 — Resolution independence can mean less time to implement
and maintain

 — No need to maintain and serve separate versions for
different device classes

 — Browser features can be detected by the client

Mobile Web96

Disadvantages

 — Only achieves resolution independence, but not content
adaptation, so content is not optimized for all devices

 — More bytes than necessary can be sent to a device, which
can impact performance

 — Can perform poorly, or not at all, on low-end devices since
the same content will be delivered to both desktop and
mobile device.

Progressive Enhancement
Progressive enhancement is a technique that has been around
for more than 15 years. The idea is that you start off with
a minimal, base page to every device, along with JavaSript
enhancement logic. A low-end device might ignore or fail to
execute the enhancement, but will be still deliver a functional
experience for the user. More capable smartphones, tablets and
desktop browsers will execute the JavaScript enhancements
progressively until the page is built up to an optimal level for
the device.

This approach stands in contrast to the idea of graceful deg-
radation, where rich functionality is built first, and exceptions
are added afterwards. This requires additional work to ensure
that a page is still functional in the absence of some feature.

In practice, you should consider Progressive Enhancement as
a technique that can be used to smooth over differences in a
range of mobile devices, rather than as an overall approach.

Mobile Web97

Advantages

 — In theory no limit to the features that can be progressively
added

 — Can cater for full range of devices from low-end to high-
end and desktop

Disadvantages

 — Using a single base for all devices can be restrictive
 — The actual progressive enhancement JavaScript takes time

to execute, and can impact performance

Mobile-First Responsive Design
Mobile-first RWD follows the design principles of both RWD
and progressive enhancement techniques. In this approach the
design begins with a mobile-optimized version, and builds up
from there.

Advantages

 — Increases reach over pure RWD since it is more likely to
work on lower-end devices

 — Forces designers to focus on content and functionality,
making it easier to define content hierarchy, with the most
important content at the top

Disadvantages

 — Suffers the same issues as RWD
 — May require complete redesign of existing site, if existing

site does not follow this approach

Mobile Web98

Adaptive Web Design (Server-Side Adaptation)
Server-side adaptation2 uses a device detection solution on
the server to map a device's request headers to a database of
device capabilities. Once the device's capabilities are known, a
page can be built to match the device capabilities resulting in
highly optimized pages. Leading solutions include DeviceAtlas3
and ScientaMobile4.

Sometimes referred to as "browser-sniffing", the effective-
ness of this technique is evident in its adoption by most of the
major internet brands that take their web presence seriously,
including Google, Amazon, YouTube, Facebook, and Ebay.

Advantages

 — Knowing the capabilities of a device means that highly
optimized pages can be delivered for multiple device
classes

 — Extremely reliable and accurate: good solutions report over
99.5% device detection accuracy

 — Excellent performance since pages can be fine-tuned for
devices

2 There are various definitions of adaptive web design; here we mean that
there is some server-side adaptation taking place.

3 deviceatlas.com

4 scientiamobile.com

Mobile Web99

https://deviceatlas.com
https://www.scientiamobile.com

Disadvantages

 — Involves developing and maintaining different page
templates for different device classes

 — Database of User-Agent capabilities must be updated with
new devices

 — Most solutions are commercial

RESS: A Hybrid Approach
One last approach to consider is RESS (REsponsive design with
Server Side components). RESS combines the adaptive and
responsive approaches to deliver a solution that combines
the best of both. Using server-side adaptation an initial page
is optimized for a range of devices or device category. Then,
within each category, the content can be adapted further on
the client-side using responsive techniques. This approach
can be pushed further still, so that properties source from
the browser can be fed back to the server to further tune the
server adaptation.

Advantages

 — Offer most flexibility and highest degree of optimization of
all solutions

 — Benefits of high-performance server-side adaptation,
combined with ability to tweak with properties obtained
on the client-side

Disadvantages

 — Difficult to implement, requiring device database
 — Full round-trip required to get the most benefit

Mobile Web100

Hybrid Apps

Another class of web application worth a mention is hybrid
apps. These are often, but not necessarily, built with web tech-
nologies, HTML, JavaScript and CSS. Hybrid apps are compiled
and packaged as native apps, and distributed in native app
stores. They are installed like native apps, but are essentially
web apps on the inside. Generally they consist of a full screen
webview, or thin native app wrapper and a webview. The web-
view does the heavy lifting of rendering the web app, while the
native library gives access to native APIs and hardware. This is
an attractive approach to many since it is possible to leverage
web development know-how for native apps without having to
learn native platform development. Various hybrid app develop-
ment frameworks exist to help the developer, including Apache
Cordova5 and PhoneGap6, and React Native7.

It is possible to have an app that is built with web
technologies, but that is compiled down to the native code
for the platform, for example with React Native. Unless this
app is using a webview it is not really a hybrid app, at least
in the traditional sense. React Native is essentially pushing
the boundaries of what is considered a hybrid app. With React
Native apps are compiled into native code for each platform,
iOS and Android, and widgets are rendered as native platform
widgets, while Cordova/PhoneGap apps use use webviews to
render web content within a native app shell.

Please see the chapter about Cross-platform apps for more
information around hybrid and cross-platform apps.

5 cordova.apache.org

6 phonegap.com

7 reactnative.com

Mobile Web101

https://cordova.apache.org
http://www.phonegap.com
http://www.reactnative.com

Advantages

 — Cross-platform: An native app shell uses a webview to
render content from a web based content backend

 — Does not require intimate development knowledge of
multiple native platforms

 — Easier to develop and maintain than distinct native apps
for each native platform

 — Using a remote backend means the app can be updated
without having to resubmit to app stores

Disadvantages

 — Performance is not as good as a native app for demanding
applications

 — UX might not be as polished as a full native app, as
comprises are made to satisfy cross-platform constraints

Progressive Web Apps

Progressive Web App (PWA) is a term used to describe web apps
that make use of modern browser features to deliver rich app-
like experiences. The term was first coined by Alex Russell8 in
2015 to describe web apps that exhibit the following criteria:

 — Progressive: they work on all devices, and functionality is
enhanced progressively

 — Responsive: layout is flexible and can adjust with device
form factor as appropriate

8 Find Alex' blog at infrequently.org

Mobile Web102

https://infrequently.org

 — Connectivity-independent: will function under poor
network conditions, and even offline

 — App-like: feels like an app, with an app-shell, and mostly
without full page refreshes

 — Fresh: pulls in new content whenever possible
 — Secure: served over HTTPS
 — Discoverable: identifiable as an app while also being

indexable by search engines on the web
 — Re-engageable: stimulate re-engagement with features

like push notifications
 — Installable: can be added to the home screen of a device

The reason PWAs have risen to prominence is because the
web platform has grown sufficiently mature to deliver such
experience. As we saw earlier, HTML5 has become advanced
enough to support features like push notifications, geoloca-
tion, and offline experiences. These are all features that
previously would have been found only in native apps. Several
key HTML5 APIs make PWAs possible:

 — Service workers for offline and network-challenged condi-
tions, as well as handling push message notifications

 — Push Message API, and Notifications API provide a
mechanism for delivering asynchronous push messages

 — Web App Manifests provide a mechanism for meta
description of a web app, that helps with indexing and
adding to the home screen of devices

Support for PWAs relies on support for the underlying
browser features. Of the main mobile browsers, PWAs are
supported by Chrome, Firefox, Opera, and Samsung Internet
browser, and is coming soon to Edge.

For a long time it was uncertain whether Safari would sup-

Mobile Web103

port PWAs. However, implementation of service workers, a key
PWA component, began in WebKit early in July 2017. WebKit,
once the poster boy of the browser engine world is already
being referred to as the new Internet Explorer as it lags behind
the rest in the implementation of new features and standards,
causing headaches for developers.

Accelerated Mobile Pages (AMP)

Google's Accelerated Mobile Pages (AMP) project9 is a publish-
ing format based on an open source web components frame-
work with an emphasis on performance. AMP was originally
conceived as a response to Facebook's Instant Articles and
Apple's News projects, and so initially the emphasis was on
news and blog style content.

However, since its launch in 2015 it has evolved to support
a much wider range of content, with interactive features such
as carousels, image galleries, interactive menus, and a pro-
gramming model that supports complex ecommerce features.

AMP is an answer to poor performance of mobile pages; it
is designed to have <1sec page downloads, and is often a lot
faster.

9 ampproject.org

Mobile Web104

https://www.ampproject.org

What is AMP exactly?
There are three parts that make up AMP:

1. AMP-HTML: A flavor of HTML5, which both restricts the
tags you can use, as well as adding so new ones

2. AMP-JS: A JavaScript library that functions as the AMP
runtime, which orchestrates the optimized loading and
rendering of AMP pages

3. AMP-CACHE: A special cache for AMP pages that enables
AMP pages to be rendered instantly in some cases

Getting started with AMP is not too difficult since AMP
pages are basically HTML. Every AMP page starts off with some
standard boilerplate code that includes the AMP-JS runtime.
When the AMP runtime parses the AMP-HTML page and comes
across any AMP components, it will inject generated markup
into the DOM to replace the AMP-HTML markup; this is what
gets rendered in the browser.

Canonical AMP Pages
All valid AMP pages must include a canonical link tag. This tag
should point to the equivalent, non-AMP version of the page if
it exists. If there is no non-AMP equivalent, then the canonical
link must point to itself. This is known as a canonical AMP
page—a standalone AMP page that serves as both the mobile
and the desktop web page.

AMP supports responsive design and media queries, and so,
despite its name (Accelerated Mobile Pages) it is not a mobile-
only technology. It could be better described as mobile-first:
optimized for mobile but can scale responsively to support
larger viewports.

Mobile Web105

The Canonical AMP approach is being promoted by the AMP
team as a web strategy suitable for a wide variety of business.
To this end the AMP team launched a site, ampstart.com,
dedicated to publishing free to use and modify responsive
canonical page templates along with reusable AMP UI compo-
nents. These components include styled buttons, forms, image
carousels, navigation and other common UI components.

Combining AMP and PWAs
AMP and PWAs have complementary strengths and different
weaknesses. It is therefore natural to consider combinations of
the two. Several different patterns have been identified that
combine the speed of AMP with the richness of PWAs:

AMP as PWA
In this pattern, the AMP page is the PWA. It uses the AMP
library, so that a valid AMP page can be served from the
AMP Cache, resulting in lightning fast pages. When links are
followed however, the user is brought to the original server,
where a service worker can now be used.

AMP bootstraps PWA (aka AMP up aka AMP to PWA)
In this model, the AMP page uses a special component,
<amp-install-serviceworker>, to install a service worker
in the background on the users device. The service worker can
then bootstrap the PWA by downloading and caching initial
parts of the PWA, so that when the user follows a link to the
full PWA, it is already downloaded and ready to display.

AMP data embedded in PWA (aka AMP down aka AMP in PWA)
In this pattern AMP pages are used as the content backend,
within a PWA shell.

Mobile Web106

The Physical Web

The Physical Web10, is an open source project that aims to
enable quick and seamless interactions with physical objects
and locations, via Bluetooth beacons.

Apple has its own, proprietary Bluetooth beacon technology
called iBeacon. iBeacon differs from the Physical Web in that
iBeacons trigger apps, while Physical Web beacons trigger web
URLs. The biggest advantage of the Physical Web over iBeacons
is that no app is needed, while an app must be installed prior
to interacting with an iBeacon. This significantly lowers the
barrier to use of the Physical Web, and increases its reach,
without any prior setup, to billions of Bluetooth enabled
devices.

Getting started with the Physical Web is remarkably easy.
Just get a beacon, set it up to point to a URL, that's it! Users
with compatible Bluetooth enabled devices will then receive
notifications where they are nearby. This is a simple idea the
enables a wide variety of applications, like smart vending
machines and targetted marketing in physical spaces.

Google also has a more complex beacon platform11 with
remote cloud management of beacons, which can offer scal-
ability and other benefits for large beacon deployments.

10 google.github.io/physical-web

11 mobiforge.com/design-development/googles-beacon-platform-and-the-
physical-web

Mobile Web107

https://google.github.io/physical-web/
https://mobiforge.com/design-development/googles-beacon-platform-and-the-physical-web
https://mobiforge.com/design-development/googles-beacon-platform-and-the-physical-web

Web Performance and Why it Matters

Most developers intuitively know that web performance is
important; nobody likes to wait for a page to load. But there is
plenty of empirical data to prove that performance is crucial,
especially on mobile:

 — Walmart experiments found that for each 1 second faster
page load time there was a 2% increase in conversions12

 — Amazon research found that a 100ms latency increase
resulted in 1% fewer sales13

 — A Google study reported that 53% of visitors will leave be-
fore a page has loaded if it takes longer than 3 seconds14

Depending on which report you read, if your site is slow,
you will lose over half your visitors; they just will no wait for
it to load, and you will not have a chance to show them what
you have to offer. You have a tough audience to please, and
the only way to succeed is to deliver a good user experience;
and to do this, you will need to deliver a fast site.

To illustrate this, here are some statistics on page slow-
downs on bounce rates:

12 webperformancetoday.com/2014/04/09/web-page-speed-affect-conversions-
infographic/

13 blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-
sales/

14 doubleclickbygoogle.com/articles/mobile-speed-matters

Mobile Web108

http://www.webperformancetoday.com/2014/04/09/web-page-speed-affect-conversions-infographic/
http://www.webperformancetoday.com/2014/04/09/web-page-speed-affect-conversions-infographic/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

Impact of page slowdowns on bounce rates
(by device type)

(Source: soasta.com/wp-content/uploads/2017/04/State-of-Online-Retail-

Performance-Spring-2017.pdf)

Performance Goals
The idea of a performance budget has been around for a few
years; during planning a "budget" is set on different aspects of
how a page should perform, and you try to stick to this budget
during development. The specific dimensions of a performance
budget might include restrictions on page weight, number of
HTTP requests, page load time, time to initial interactivity
and so on. If you can not meet the budget, then you need to
consider the assets or features that are blowing the budget. Do
you really need that fancy image carousel of JavaScript library
for instance?

Impact of
100ms slow-

down on
bounce rate

Impact of 1s
slowdown on
bounce rate

Impact of 2s
slowdown on
bounce rate

0.4%

0.2%

0.2%

18.4%

49.8%

32.3%

62.1%

102.9%

67.6%

Mobile Web109

https://www.soasta.com/wp-content/uploads/2017/04/State-of-Online-Retail-Performance-Spring-2017.pdf
https://www.soasta.com/wp-content/uploads/2017/04/State-of-Online-Retail-Performance-Spring-2017.pdf

RAIL
Google defines an approach and set of goals for web perfor-
mance called RAIL15 : Response, Animation, Idle, Load. The
goals it aims for are:

 — Response: 100ms—give immediate feedback to user input
 — Animation: 10ms—when scrolling or animating produce

frames in under 10ms to achieve 60fps
 — Idle: 50ms—non-critical operations should not take longer

than 50ms so that application feels fast
 — Load: 1s—deliver interactive content in under 1000ms to

keep users engaged

It is not always possible to achieve all these goals together,
especially on low-end devices, so it is sometimes necessary to
prioritize these goals, focusing on Load and Response first for
example.

Analytics

Analytics is vital to understanding your visitors and traffic. It
can be particularly useful on mobile to help you understand
what devices your users are using. For many, however, analytics
starts and stops with installing a Google Analytics script. But
Google Analytics is not the only show in town.

Analytics tools can collect their data on the client or on
the server. It is worth noting that relying solely on JavaScript
based analytics can be problematic, especially on mobile. If a
device fails to run the analytics script—for example if it is an
older device—then you will have no visibility of this device
at all, and it can lead you to focus on the wrong devices.

15 developers.google.com/web/fundamentals/performance/rail

Mobile Web110

https://developers.google.com/web/fundamentals/performance/rail

Additionally, many ad blockers also block client-side analytics
such as Google Analytics. If you are more serious about your
analytics, a more accurate picture of your data can be gained
by employing a combination of both client and server-side
analytics.

Popular tools include Google Analytics16, KISSMetrics17, and
Piwik18. Some tools, such as wao.io19 provide both server and
client side analytics.

16 analytics.google.com

17 kissmetrics.com

18 piwik.org

19 wao.io

https://analytics.google.com
https://kissmetrics.com
https://piwik.org
https://wao.io

A/B Testing
A/B Testing is a very useful technique that can be used in
web development to evaluate the performance of alternative
interface design, messaging and layout variants so that you
can make informed decisions about the UX you deliver. Most of
the main analytics tools support A/B testing, including Google
Optimize, Google Analytics (Experiments), and Piwik20.

Real User Monitoring (RUM)
RUM involves continuous monitoring of user interaction with
a web application in real time. This allows the website owner
to quickly pinpoint, prioritize and remedy issues with avail-
ability, functionality, responsiveness, and so on. This in turn
gives valuable insights into user behavior and satisfaction and
enables you to fine-tune and improve the overall user experi-
ence. RUM can take place client-side or server-side and plug-in
tools such as Sevenval's wao.io can correlate front-end and
back-end metrics without having to make any code changes to
the application.

20 piwik.org

Mobile Web112

http://wao.io
https://piwik.org/

Monetization

Ads
Ads have traditionally been one of the most common ways to
monetize a website, and no less so on the mobile web. There
are plenty of ad networks to choose from.

Ad blockers
If you choose an ad-based monetization model, note that
there has been a growing backlash against ads—particularly on
mobile—since Apple added support for ad-blockers into Mobile
Safari in 2015. Ads have a bad reputation for adding unneces-
sary page bloat, and degrading web performance. Mobile and
desktop browsers are increasingly shipping with built-in ad
blockers and enhanced privacy protection. This trend is likely
to increase in the coming years, especially in light of Google's
recent announcement that it would implement an ad blocker in
its Chrome browser. Therefore, if you are relying on ad revenue,
be sure to know the risks and potential downsides.

When choosing an ad network, pick a reliable one that will
not harm the performance of your site. A relative newcomer
to the the field is AMP for Ads (A4A)21. These are ads that are
based on AMP technology, but will work fine for desktop too.
A4A has strict rules about what is permitted and performance-
degrading ads will be removed from a page, so you can be
confident that ads will not cause UX or performance issues.

21 see ampproject.org/learn/who-uses-amp/amp-ads and github.com/
ampproject/amphtml/blob/master/extensions/amp-a4a/amp-a4a-format.md

Mobile Web113

https://www.ampproject.org/learn/who-uses-amp/amp-ads/
https://github.com/ampproject/amphtml/blob/master/extensions/amp-a4a/amp-a4a-format.md
https://github.com/ampproject/amphtml/blob/master/extensions/amp-a4a/amp-a4a-format.md

Ecommerce
There are many ways to build a web ecommerce solution, rang-
ing from off-the-shelf solutions to custom developments. Many
new and traditional payment service providers, such as PayPal
and Stripe, have good mobile support and are relatively simple
to implement. Additionally a new breed of NFC-enabled mobile
wallets, such as Android Pay, Apple Pay, and Samsung Pay, can
increasingly be used on the web.

Payment Request API
One final technology to watch is the Payment Request API.
This is a recent HTML5 specification that aims to provide
frictionless payments on the web, in two ways

1. Removing the need for cumbersome input of payment
details

2. Removing the requirement to share your credit card details
with third-party sites of unknown trustworthiness

Several browser already support the Payment Request API,
include Chrome for Android, Edge, and Samsung Internet, and
coming soon to Firefox.

Please see the Monetization chapter for more detail on the
types of monetization models that can be used.

Mobile Web114

General UX and Performance Guidelines

We do not have the space here to go into much practical detail
here22, but a general set of guidelines for mobile web develop-
ment includes the following.

UX

 — Optimize for mobile
 — Do not require pinch-to-zoom
 — Make product images expandable
 — Ensure tap targets and links large enough for "fat" fingers
 — Keep calls to action front and center
 — Keep menus short
 — Intuitive navigation with prominent link to homepage
 — Avoid interrupting pop-ups and large interstitials
 — Include a site search, with filters to narrow results where

possible
 — Include click-to-call where possible
 — Only ask for special browser permission when needed,

not up-front. E.g. Ask for permission to send push
notifications when a user has already indicated a desire to
subscribe, or say for updates on an order, and geolocation
only when needed for mapping or address.

 — Let users browse as guests
 — Let users purchase as guests
 — Autofill form inputs where possible

22 Check this site for some graphical examples: https://developers.google.com/
web/fundamentals/getting-started/principles

Mobile Web115

Performance

 — Keep page weight small, do not include unnecessary media
such as images and videos

 — Compress all images
 — Avoid redirects
 — Keep number of external resources low, to reduce HTTP

requests
 — Implement caching
 — Lazy load images and content as needed
 — Minify text resources
 — Avoid JavaScript and CSS frameworks unless necessary
 — Avoid unnecessary embeds and includes
 — Use ads responsibly, and only use lightweight ads
 — Define a performance budget, and try to stick to it

Testing for the Mobile Web

Testing on the web is crucial. And on the mobile web, while
simulators, and even desktop browsers are useful, the most
reliable testing is that performed on real devices. Earlier we
talked about device fragmentation. This, combined with the
variety of browsers available on each platform makes for a
headache when it comes to testing your web pages. It is next
to impossible to exhaustively test on all browsers and devices.
None but the biggest and best funded projects will be able to
even come close. So, when it comes to testing the mobile web
you need to prioritize.

If your budget can afford it, it is recommended to acquire
several devices on each of the main mobile platforms, Android,
iOS, and Windows. Devices should be a mix of high and low-

Mobile Web116

end, and with the ability to switch between mobile networks if
possible.

Broadly speaking, testing effort is divided between
functional and UI testing on the one hand, and performance
testing on the other. Functional and UI testing is concerned
with testing business logic, user interface, UI components and
usability. Sometimes issues will only show up on some devices
on some platforms, and this makes testing on mobile difficult.

Performance testing is more concerned with how well the
site works: is it fast, does it feel fast, does it work under poor
network conditions?

Manual testing will likely be the first step in any web
testing. While there are great efficiency gains to be achieved
through automated testing, automated testing is not always
practical, perhaps due to the small size of a project, or time or
budget limitations.

Thankfully, there are plenty of tools to help with all aspects
of mobile web testing.

Browser Developer Tools
Even for mobile web first pass testing is often carried out on
a desktop browser with its built-in developer tools. Just some
of the features of a browser's developer tools include DOM
inspection, network inspection, performance profiling

 — DOM inspection: allows examination of the HTML ele-
ments that make up a page

 — Network throttling: for simulating slow and poor network
conditions, such as Edge, 2G, 3G and so on

 — CPU throttling: to simulate high-end or low-end smart-
phones

 — Waterfall chart and timelines: provide visualizations of
how a page loads and renders over time

Mobile Web117

 — JavaScript debugging: allows the developer to examine,
add breakpoints, view events, and step through JavaScript
code

 — CPU and Memory profiling: records how the CPU perfor-
mance and RAM footprint over time

Other features particularly useful for mobile web develop-
ment and testing are

 — Responsive design mode: simulates viewports at a variety
of configurable sizes, so that you can see how the UI
behaves under differently sized viewports

 — Screen mirroring: a connected device's browser is mirrored
to the developer tools, and can be interacted with via the
desktop browser

Remote Debugging
All of the major mobile platforms support remote debugging
of mobile devices. Remote debugging allows you to attach a
mobile device to a desktop machine and apply the developer
tools of that machine's browser to test and profile the web
pages on the mobile device.

Remote debugging is an extremely useful tool, since it
allows you to test on real devices, and on real networks. Of
course, you still need devices to test with, and that can get
expensive. At the very least, you should be looking at having a
low-end and high-end device on each of the main mobile OSes:
Android, iOS, and Windows Phone. Even then, there will be
major gaps in your testing coverage; this is where device labs
can help.

Mobile Web118

Performance and UX Testing Tools

Selenium WebDriver
Selenium WebDriver23 is the leader in automated web testing.
Automated testing is very useful for quickly finding issues
with user interfaces, and can be used for regression testing to
quickly find breaking interface changes.

Selenium additionally supports mobile testing24 on Android
and iOS, and both simulator and real device testing is sup-
ported.

Webpage Test
WebPagetest25 is an open source and free-to-use performance
testing tool which offers remote testing on real desktop and
mobile browsers at different locations around the world. It
provides waterfall performance charts, as well as measurement
of key performance metrics such as time to first byte, speed
index, and number of DOM elements.

mobiReady
MobiReady26 is a free tool for developers, designers, and
marketers that tests web pages and sites for mobile-readiness
based on mobile web best practices and standards. It returns
a detailed analysis for a page, and offers recommendations on
how to address any detected issues. It also includes:

23 seleniumhq.org/projects/webdriver

24 github.com/SeleniumHQ/selenium/wiki/WebDriver-For-Mobile-Browsers

25 webpagetest.org

26 mobiready.com

Mobile Web119

http://www.seleniumhq.org/projects/webdriver/
https://github.com/SeleniumHQ/selenium/wiki/WebDriver-For-Mobile-Browsers
https://webpagetest.org
https://mobiready.com

 — device visualizations on low, mid, and high-end devices,
showing how the page will look on a variety of screen
sizes

 — breakdown of page weight for each device class
 — a benchmark report of how your page scores against the

Alexa top 1000 sites

MobiReady also exposes an API that can be used for
automated testing of entire sites.

Lighthouse
Lighthouse27 audits a web app for PWA features, including:

 — can it load offline or under poor network conditions?
 — is it fast?
 — is it served from a secure URL?
 — does it implement accessibility best practices?

Lighthouse is available as an online service, a Chrome
extension, a command line tool, and has recently been
integrated with Chrome developer tools. The command line
version is useful for automated testing.

PageSpeed Insights
PageSpeed Insights28 is a tool from Google that measures page
performance for mobile and desktop visitors. It checks for com-
mon performance best practices, and ranks pages out of 100.
When issues are detected, it offers advice on how to fix them.

27 developers.google.com/web/tools/lighthouse/

28 developers.google.com/speed/pagespeed/insights

Mobile Web120

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/speed/pagespeed/insights/

Device Labs
The idea of a Device Lab has been around for many years. A
device lab is simply a collection of devices that can be used for
development and testing. Device labs fall into two categories:
physical and remote.

Remote labs offer the most convenience: you install a
client on your computer and it allows you to access real device
remotely over the web. On the other hand, with a physical
lab, you can hook a device directly up to your laptop and use
the browser's remote debugging tools. This can be helpful for
solving issues that affect specific devices.

AWS Device Farm
Amazon's AWS Device Farm29 is an advanced device testing lab
that features automated testing against a large collection of
real devices in the AWS cloud, as well as direct remote access
that allows you to interact with swipes and gestures in real
time from your web browser. AWS Device Farm contains a wide
variety of new and old iOS and Android devices.

AWS Device Farm supports pay-as-you-go and flat-rate
charging. On the PAYG model, the first 1000 minutes are free,
so it can be a good way to try the service before committing
to it.

BrowserStack
BrowserStack30 offers remote testing on a variety of desktop
and mobile browsers, and different operating systems. The
mobile devices have been chosen for "maximum market cover-
age" and includes a vast array of real iOS and Android devices.
Supports automated testing via Selenium cloud testing.

29 aws.amazon.com/device-farm

30 browserstack.com

Mobile Web121

https://aws.amazon.com/device-farm/
https://www.browserstack.com

Browserstack is free for open source projects, and offers a free
trial for commercial projects.

Samsung's Remote Test Lab
Samsung's Remote Test lab31 offers free remote testing on
Samsung devices. You reserve and connect to real devices
through your web browser. The device list includes old and new
phones, tablets, and watches—not surprisingly all Samsung
devices—and spread across its Galaxy, Z (Tizen), and Gear
brands.

SIGOS App Experience
SIGOS App Experience32, formerly known as Keynote Mobile
Testing, formerly known as DeviceAnywhere (it's hard to keep
up!) was one of the first Virtual Device Labs. Despite its latest
name, SIGOS App Experience can be used to test on the web
as well, on its more than 2000 devices. SIGOS supports both
manual and automated testing. The service is accessed via a
desktop browser. Offers a 7 day free trial.

Perfecto Mobile
Perfecto Mobile33 offers paid-for remote testing on real devices.
Supports manual and automated testing on multiple devices. A
free trial is also available.

31 developer.samsung.com/rtlLanding.do

32 appexperience.sigos.com

33 perfectomobile.com

Mobile Web122

http://developer.samsung.com/rtlLanding.do
https://appexperience.sigos.com/
https://www.perfectomobile.com/

Open Device Lab
The Open Device Lab34 is a community approach to device
labs. Participating organizations offer a physical space where
developers can go and use for free. There are currently 154
Open Device Labs across 35 countries offering free access to
4255 devices.

Resources

 — Resource site for mobile web design and development:
mobiforge.com

 — Browser feature support and compatibility: caniuse.com
 — Responsive website design with RESS: smashingmagazine.

com/2013/10/responsive-website-design-with-ress
 — Your first Progressive Web App: developers.google.com/web/

fundamentals/getting-started/codelabs/your-first-pwapp
 — Offline Web Applications: udacity.com/course/offline-web-

applications--ud899
 — The AMP project: ampproject.org
 — Progressive Web AMPs: smashingmagazine.com/2016/12/

progressive-web-amps
 — The Physical Web project: google.github.io/physical-web
 — A good perspective on software quality and testing using

web browsers: mobiletestingblog.com/2017/05/01/recent-
web-browser-quality-related-innovations

 — High Performance Mobile Web - Best Practices for Optimiz-
ing Mobile Web Apps, by Max Firtman (O'Reilly Media,
2016)35

34 opendevicelab.com

35 available via http://shop.oreilly.com/product/0636920035060.do

Mobile Web123

https://mobiforge.com
https://caniuse.com
https://www.smashingmagazine.com/2013/10/responsive-website-design-with-ress/
https://www.smashingmagazine.com/2013/10/responsive-website-design-with-ress/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
https://www.udacity.com/course/offline-web-applications--ud899
https://www.udacity.com/course/offline-web-applications--ud899
https://www.ampproject.org/
https://www.smashingmagazine.com/2016/12/progressive-web-amps/
https://www.smashingmagazine.com/2016/12/progressive-web-amps/
https://google.github.io/physical-web/
https://mobiletestingblog.com/2017/05/01/recent-web-browser-quality-related-innovations/
https://mobiletestingblog.com/2017/05/01/recent-web-browser-quality-related-innovations/
https://opendevicelab.com/
http://shop.oreilly.com/product/0636920035060.do

Enterprise Apps
Corporate decision makers now view mobile enterprise apps
as a strategic factor, a necessity, rather than an item on an
accountant’s spreadsheet. Internal enterprise apps are able to
reduce the latency of information transfer within a company.
They increase the agility of the worker by making competitive
data & big data available at any time and anywhere. Apps can
also allow companies to engage with its customers, suppliers,
and end consumers etc. Examples of enterprise apps include
field & sales staff software, emergency response, inventory
management, supply chain management but also B2C market-
ing.

It may seem an obvious thing to say, but the major risk
at the moment, is not having an enterprise mobile strategy.
Business is now looking at Mobile for All rather than limiting
it to senior management, as it may have been in the past.
To enable this the traditional IT approach of buying devices
and distributing them throughout the management structure
is no longer the only enabling strategy being used; we have
moved from Bring Your Own Device (BYOD) to BYOx including
apps, content, development tools/frameworks and now even
wearables, enabling staff to use their personal devices to con-
nect to the IT infrastructure, download secure content and use
enterprise apps. With the advent of BYOx, a company exposes
itself to risks which traditionally have never been part of the
corporate IT strategy. Early adoption of a well thought out
and implemented enterprise mobile strategy is key to ensuring
data is secured at all times.

B
Y

 Ia

n
Th

ai
n

&
 D

av
oc

 B
ra

dl
ey

Enterprise Apps126

And from a developer's point of view, the enterprise sector
has a lot to offer as well: Compared to traditional B2C app
developers those who create enterprise apps are twice as
likely to be earning over $5k per app per month and nearly 3
times as likely to earn over $25k according to the Developer
Economics report1.

Key points for Mobile Apps in Shaping the new Business
Enterprise

 — Cost reduction compared to existing systems
 — Streamlining business processes
 — Competitive advantage with up-to-date data immediately

at hand
 — Increase employee satisfaction and effectiveness
 — Rapid response compared to existing processes
 — Analyzing and utilizing Big Data

1 www.developereconomics.com/report/next-gold-rush-enterprise-apps

127 Enterprise Apps

http://www.developereconomics.com/report/next-gold-rush-enterprise-apps/

Enterprise Strategy

Many companies nowadays have a Chief Mobile Officer (CMoO)
or have extended their CIO position. It is their job to co-
ordinate mobile trends and directions and to bridge the gap
between business and IT. Depending on the size and main
focus of the company, his/her job is also to either build up an
internal mobile software development team or coordinate the
cooperation with an external development agency. To make
sure that the mobile software delivers what the employees
/ users want, that this is technically achievable and that
everything fits the overall company strategy, the leader might
consider setting up a Mobile Innovation Council (MIC) or Cen-
ter of Excellence (COE). This group should contain key members
such as: skilled representatives from the mobile development
team, stakeholders for mobile within the company, and most
importantly end users from various departments with expertise
in the relevant business processes.

Topics that the CMoO/CIO needs to focus on together with
the MIC/COE include:

 — Strategy - vision and direction for the general mobile
strategy and for the apps.

 — Governance policies - Bring Your Own Device (BYOD) vs.
Chose Your Own Device (CYOD) which is essentially the dif-
ference between a Mobile Application Management (MAM)
policy (BYOD) and a Mobile Device Management & Security
(MDM) policy (CYOD).

 — App specifications
 — App road map
 — Budget planning
 — Acceptance - signing off the apps into production.

Enterprise Apps128

 — App deployment - early feedback on demos and proto-
types, testing, mass deployment.

 — Incentives - how to increase the adoption and usage of
the apps created.

In commercial adoption terms enterprise app development is
mostly mainstream now. The question a company writing third
party enterprise apps, or a development manager keen to adopt
an internal mobile enterprise strategy used to be “This all
sounds great, but why do we need it?”. This has now become
"Mobile will give us a competitive advantage and empower
our workforce" which is a compelling reason for a company to
adopt a mobile strategy.

Key points when building the business case for Mobile
Enterprise Apps

 — Create a visionary plan for more mobile apps, on various
devices and know how they will aid, shape and empower
your enterprise.

 — Create an ADS (Application Definition Statement) for each
app, specifying purpose and intended audience.

 — Create a budget for devices & device upgrades.
 — Create a plan for an application & device management

strategy & security infrastructure.
 — Create a plan for an app dev team using a future proof

development architecture - such as a MADP, frameworks
etc.

Enterprise Apps129

UI/UX Design And The Enterprise

Mobile users have been using their devices for many years now.
Some starting out originally as a consumer, but now as mobile
is used more and more in the enterprise, they have taken
that experience and expectations with them, as end users to
business systems as they are mobilized. They have become the
Prosumer, the Professional Consumer of enterprise apps. This
means, they have relatively high expectations when it comes to
user experience and you should take this into account.

Your enterprise app, whichever mobile device it runs on,
should follow the standards for that operating system, such
as the Human Interface Guidelines or HIG from Apple. There
are a number of reasons for why your designers should design
following these guidelines, both Apple and Google have great
documents which can be found at developer.apple.com/ios/
human-interface-guidelines and at developer.android.com/
design/index.html.

If you build an enterprise app that responds or interacts in
unfamiliar ways users will probably respond negatively and/
or will need training on the new functionality you have taken
so much care to implement. This is why you should make sure
that your app feels complementary to the mobile OS and not
competing with it, therefore making the user intuitively feel
familiar with your software and its usage patterns. So please
read our chapter on UI/UX design carefully and apply the
learnings when creating your solution.

Enterprise Apps130

https://developer.apple.com/ios/human-interface-guidelines/
https://developer.apple.com/ios/human-interface-guidelines/
https://developer.android.com/design/index.html
https://developer.android.com/design/index.html

Mobilizing Existing Systems

If you are already providing a system to customers which has
not yet been mobilized, you will have various decisions to
make. It is critical to fully understand the impact of adding a
mobile offering to your system before you start implementation
of the solution. Common reasons to mobilize your product can
include using phone features, such as camera and GPS, or just
the ability to capture information on the move, without being
connected to the internet. You must ensure you go mobile
for the right reasons, as the ongoing support, maintenance
and development of a mobile offering will become a separate
product road map to your original system and will carry an
on-going cost.

Key points when deciding how to mobilize an existing
system

 — Clearly define the reasons for going mobile and ensure
that those reasons are strong enough to take the step into
mobile.

 — Understand the difference between mobile and desktop. Do
not just copy your existing system, so for instance, instead
of a form to capture information, you could capture audio
and upload that into your system, allowing a user to
quickly make notes without the need to type into a small
device.

 — Do not try and implement all the features of your existing
system; implement the important features in a way which
suits mobile.

 — Ensure you understand which devices your clients use and
which features of your system are most required to be
mobilized.

 — Have a clearly defined mobile testing strategy which covers
cross platform testing and multiple device types and
operating systems.

Enterprise Apps132

Device And Application Management In
The Enterprise

When developing an enterprise app, you should always keep in
mind that the hardware containing sensitive company data can
get lost or stolen. There are now two approaches for securing
devices, content and apps. Mobile Device Management (MDM)
and Mobile Application Management (MAM). These are now
coming together as Enterprise Mobility Management (EMM).

MDM gives an enterprise ultimate control over a device, so
when a device is lost, stolen or an employee leaves, taking the
device, the enterprise can wipe the device and essentially stop
the device from working. This approach is usually taken when
an enterprise owns the device so all the data and apps on the
device are owned by the company; any personal data stored on
the device is stored at the employee‘s risk.

MAM enables an enterprise to adopt BYOD as it allows an
enterprise to secure apps and content downloaded to a device
without taking ultimate control away from the owner of the
device. When an employee leaves a business, taking their
device with them, the business can disable the enterprise
apps and wipe any content downloaded to the device without
affecting personal data, such as photos and consumer bought
apps. Most MDM and MAM solutions are cross platform, sup-
porting multiple devices, and this should always be taken into
consideration when deciding upon an MDM or MAM provider.

Various security features are available through both these
management solutions, including:

Enterprise Apps133

 — Device monitoring
 — License control
 — Distribution via an internal Over-The-Air (OTA) solution
 — Software inventory
 — Asset control
 — Remote control
 — Connection management
 — Application support & distribution

Security measurements include

 — Password protection
 — On-device data encryption
 — OTA data encryption
 — Remotely lock devices
 — Remotely wipe data
 — Re-provision devices
 — Back-up data on devices

Examples of EMM providers are:

 — Airwatch: air-watch.com
 — App47: app47.com
 — Apperian: apperian.com
 — Good: good.com
 — Microsoft: microsoft.com/en-us/windows/windowsintune
 — MobileIron: mobileiron.com
 — Mocana: mocana.com
 — SAP Afaria: go.sap.com/product/technology-platform/

afaria-mobile-device-management
 — SOTI: soti.net

Enterprise Apps134

http://www.air-watch.com/
http://www.app47.com/
http://www.apperian.com/
http://www.good.com/
http://www.microsoft.com/en-us/windows/windowsintune
http://www.mobileiron.com/
http://www.mocana.com/
http://go.sap.com/product/technology-platform/afaria-mobile-device-management.html
http://go.sap.com/product/technology-platform/afaria-mobile-device-management.html
http://www.soti.net/

Mobile Application Development
Platforms (MADP)

Usually, one key element of enterprise applications is data
synchronization. The mobile devices have to be refreshed with
relevant or up to date data from the company's servers and
the updated or collected data has to be sent back. The scope
of data access is determined by the job responsibilities of the
user as well as by confidentiality policy. In any case synchroni-
zation has to be secure, as corporate data is one of your most
prized assets. Furthermore, a company-wide accepted app will
be multi-platform.

To compensate the shortcomings of the native SDKs as
well as the common multi-platform solutions in these regards,
you might want to consider evaluating Mobile Application
Development Platform (MADP) solutions. MADPs are mobile
development environments that provide the middleware
and tools for developing, testing, deploying and managing
enterprise apps running on multiple mobile platforms with
various existing back-end data sources. Their aim is to simplify
development and reduce development costs, where skills must
be maintained for multiple platforms, tools and complexities,
such as authentication and data synchronization.

Available solutions include:

 — IBM MobileFirst Platform: www.ibm.com/mobilefirst
 — KonyOne: www.kony.com/products
 — Pega Amp: www.pega.com
 — SAP Cloud Platform Mobile Services: cloudplatform.sap.

com/capabilities/mobile
 — Spring Mobile Solutions: www.springmobilesolutions.com

Enterprise Apps135

http://www.ibm.com/mobilefirst
http://www.kony.com/products
http://www.pega.com
https://cloudplatform.sap.com/capabilities/mobile.html
https://cloudplatform.sap.com/capabilities/mobile.html
http://www.springmobilesolutions.com

Security In Enterprise Apps

One of the main functions of any IT department is to ensure
that all aspects of the company infrastructure is secured
against attack so that there are no data leaks and no data is
compromised or stolen. As mobile devices are an extension
of a company’s IT infrastructure, all enterprise apps must
be designed to ensure that they cannot be used to illegally
gain access to a company’s internal network. As an enterprise
app writer you will usually be asked to conform to standards
which a company has laid out in their security policies, so be
prepared to answer questions about securing your app, such as
data encryption, network communication and dealing with jail
broken or rooted devices.

Many EMM providers actually enhance app security, using
techniques such as app wrapping or providing an SDK which
app writers can use. These features and regular updates of
these platforms, allow an enterprise to lock down their apps
remotely and also keep up with the changing security land-
scape without needing to invest as much time and effort into
security.

Enterprise Apps136

Key points for securing Enterprise Apps

 — If using an EMM provider ensure they have the security re-
quired security features to meet your enterprise standards.

 — When storing any data on the device ensure it is en-
crypted.

 — When communicating with web services, always use https.
 — In addition to using https, when communicating with web

services ensure you perform end point checking in both
the app and the web service to confirm that the server/
device you are connecting with is valid.

 — Always check that any settings your app is packaged with
have a checksum to ensure that the values cannot be
changed once shipped to the device.

 — Do not allow the app to run on jail broken or rooted
devices.

 — Have a method for disabling the app if the app detects
that it has been compromised.

 — Ensure that all use of encryption complies to export
regulations and any laws relevant to the region/s the app
is being used in.

Mobile Gaming

The Mobile Gaming Economy

The games market on mobile continues to be a major driver
of growth and revenues for developers and in 2016 generated
the equivalent of global box offices sales for the year1. This
has now become so definitive that mobile finally became
the largest sector of the video games market in 2016 and is
expected to represent 42% of total global revenues. Q1 2017
revenues in mobile gaming grew 51% year-over-year to about
$11.9 billion2.

In terms of content and brands, the market is increasingly
mature; with games like Clash of Clans, Candy Crush Saga and
Game of War continuing to dominate the top 10 grossing chart.
However, in 2016 we did see much more variety than in previ-
ous years with new titles like Clash Royale and Pokemon Go
(both from established players) have introduced new mechan-
ics. There have also been a rise in the number of second (and
third) generation teams coming into the market with great
success such as Futureplay and Next Games. Despite this, the
challenges of becoming successful in mobile games continue to
increase as user acquisition becomes more costly.

2016 was also a year of experimentation for VR with 6.8m

1 blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-
games-market-report

2 sensortower.com/blog/top-mobile-games-q1-2017

B
Y

 O

sc
ar

 C
la

rk

Mobile Gaming140

https://blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-games-market-report/
https://blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-games-market-report/
https://sensortower.com/blog/top-mobile-games-q1-2017

devices sold and $1.8b revenues.3 Despite this success a lot of
VR/AR developers remain cautious in the short term4

Whilst Apple users remain the highest revenue game players
in North America; Android represents a significantly larger
audience. There are 74.5M Android only users and 48.1M iOS
Players. 31% of the market use a combination of devices
according to EEDAR5. You can find the latest details on the
specification of devices being used for games from Unity's
Hardware Stats6

Making games work on multiple platforms has become easier
to do. Looking at the top 1000 free mobile games 41% are
made by natively or using in-house tools; 34% use Unity; 18%
use Cocos2D; 2.6% use Corona, 2.2% use Unreal; 1.2% use Mar-
malade and 0.7% use other tools such as GameMaker, V-Play,
etc. Each engine offers different advantages and perspectives
to enable developers of different skill types to quickly realize
their ideas and prepare them for release. See the cross-platform
chapter of this guide for more information on the available
frameworks.

The time when a random indie-developer can strike it rich
with crazy numbers of users is essentially over. Instead, the
mobile games market has become a sophisticated space with
many different facets and challenges and most games will
still fail. Before you start creating your game you need to
pay attention to understanding the nature of the market and

3 blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-
games-market-report

4 www.recode.net/2015/7/14/11614690/at-investor-event-vr-startups-brace-
for-slow-growth

5 www.eedar.com/sites/default/files/EEDAR%20-Mobile%20Report%20
2016%20-%20Whitepaper.pdf

6 hwstats.unity3d.com/mobile/

Mobile Gaming141

https://blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-games-market-report/
https://blogs.unity3d.com/2017/02/01/cant-stop-wont-stop-the-2016-mobile-games-market-report/
https://www.recode.net/2015/7/14/11614690/at-investor-event-vr-startups-brace-for-slow-growth
https://www.recode.net/2015/7/14/11614690/at-investor-event-vr-startups-brace-for-slow-growth
http://www.eedar.com/sites/default/files/EEDAR%20-Mobile%20Report%202016%20-%20Whitepaper.pdf
http://www.eedar.com/sites/default/files/EEDAR%20-Mobile%20Report%202016%20-%20Whitepaper.pdf
http://hwstats.unity3d.com/mobile

audience. An essential part of this is that it has become an
enormously competitive market, with vast numbers of small
teams producing huge volumes of content and spending mil-
lions on development and advertising to retain their positions.

Making The Right Game

Creating delightful experiences for your target audience
requires just as much creativity as ever, perhaps more. Different
developers have different approaches. For some it starts with
an emotion (how do you want the player to feel); for others it
is about taking a game they love and realizing it in their own
unique style; there are also those who start with a mechanic
or an art style and the gameplay evolves from there. Making
games based on existing titles sounds easy, but in practice
rarely succeeds unless you bring something special that has
not been done before. Search for sideways scrolling platform
games using pixel art and you will find out just how saturated
that market is. Doing something brand new comes with its own
risk too as players need something of the familiar to help them
understand and relate to your innovations. Scott Rogers in his
book “Level Up” described this as the “Triangle of Weirdness”7.
He claimed that games consist of a world, activities and
characters. We can change any of these for new ideas, but we
cannot change all three without risking losing the audience.

For me the kind of fun we are looking for in games is
something which happens when the player is able to suspend
their disbelief and engage in an experience which is free of
real-world consequence. We become totally absorbed in the
mechanics and narrative of the experience. Curiously, challenge
and frustration are as much the motivations to play as they

7 mrbossdesign.blogspot.co.uk/2008/09/triangle-of-weirdness.html

Mobile Gaming142

http://mrbossdesign.blogspot.co.uk/2008/09/triangle-of-weirdness.html

are potential causes to leave the experience. If we achieve a
balance between these states of mind we attain a joyful state
that all game designers know about, ‘Csikszentmihalyi’s Flow’8.

We have to pay attention to what makes a game fun
specifically on a mobile device, is different from what we do
other platforms. Generally mobile games tend to be simple and
accessible with enough depth and a sense of purpose and pro-
gression to retain player attention. But it is not that simple.
The phone is our most personal device and that affects the
way we play. There is also already so much substitute; games
have to stand out and emotionally connect in order for players
and app stores to select them. Part of the game design process
is to create enough anticipation to encourage the player to
download (even if free) and communicate the aspiration that
spending money will make the game even better.

The type of game you make matters and for those unfamiliar
with the principles, some are developed from emergent
mechanics, with building blocks which combine to create
surprising or strategic outcomes, like Chess or Clash of Clans.
Then there are those games built using a series of progressive
decision points each resolved with their own steps chained
together to make a story such as FTL or Monkey Island. We
can even build games which incorporate player creativity such
as Terraria or Minecraft, or simple abstract puzzles like Threes
or SuperHexagon. Whichever path we take, balance is at the
heart of our thinking as a designer. We have to decide how
much the game will be affected by skill and how much by luck,
the extent to which the game follows a fixed narrative or is
player led and of course the complexity of the internal systems,
whether that is about character development or a resource

8 scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-
pleasure-and-creativity

Mobile Gaming143

http://scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-pleasure-and-creativity/
http://scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-pleasure-and-creativity/

economy. With Free-To-Play we also have to consider the
impact of money spent on the game experience.

What ever the kind of game is vital that the designer
focuses on what matters to the player. The most important
questions we should ask is why the player should care. We
need them to not just install, but to make our game their
distraction of choice. Mobile play may at times starts out as
distraction, but in the end we often spend more time playing
on our phones than our consoles. With some much competition
we have to ask why would they play your game? We have to be
able to answer that question honestly.

Engaging the Mobile Player
When we develop mobile games we are creating an experience
to entertain players on a specific kind of device. Tablets and
phones fulfill different needs and require an attention to
detail on the specific and different mode of use they fulfill.
The phone is generally about ‘the next minute’, it is something
we get out when we expect something to happen or need
something to occupy ourselves. How do players use their tablet
devices? For me I think it is about a longer period of rest or re-
laxation. What does that mean for the game we want to make?

Part of the appeal of any game is tied into its distinctive
vision, visual style, compelling gameplay narrative and how the
experience is designed to affect the emotions of the players.
This has to be appropriate to the nature of how the game is
consumed and in mobile we have to understand the restric-
tions inherent to these devices. The limited screen size, touch
screen controls, accelerometers, battery life, the ability to be
interrupted, the ease players have to get out and put away the
device, the limited speaker quality, the high quality headphone
output, etc all affect the way players interact with the device.

Mobile Gaming144

Mobile phones are (mostly) connected to the internet and are
the most pervasive of devices as we always carry them.

To show you what I mean, think about the way we imple-
ment controls. Touch screens allow a huge range of movement
on a 2D plane, but after a short while our skin will get hot
and lose capacitance which means the controls will become
less reliable. If we simply try to duplicate a twin stick control
system (like too many games have) we will soon find problems
with the playing experience. Arguably, this is one of the many
reasons why first person shooters have not been quite as popu-
lar on mobile. Instead we should design game mechanics with
controls specifically to make the touch process feel good or
which recognize the limits of the methods available to us and
make that part of the experience. MiniGore is a great example
for me where the difficulty of the game is actively enhanced by
the twinstick mechanics becoming harder to control over time.
On the other hand, Hayday from Supercell demonstrated how
touch could be utterly delightful. The touch motion used to
collect your crops is so pleasant that it elevates this game far
above other farming games on any platform.

Simplicity is an important factor for any design and is
supremely difficult to achieve, because even here we have to
balance accessibility with the ability to keep people playing
over time. This is why it is useful to think about the game
mechanic as separate from the context - the part of the game
which gives the player a reason to repeat the mechanic.
Mechanics are the bare bones of any game. The core loops of
actions with starting conditions, challenge, resolutions and
reward. These are the actual things players do in the game.
The context is the reason to do that again. This can be a
narrative, level structure or even simply a way of gating access
to content by player performance. But it has to deliver a sense
of purpose and progression. More than that the context needs

Mobile Gaming145

to call for the player's attention after their session has ended,
sitting in the back of our mind as 'unfinished business' enticing
us to return later for another session.

Games like CSR and Candy Crush introduced this method
of game design to the mobile market. Finding ways to chain
together a series of grinding mechanics to sustain playability
over thousands of sessions whilst always giving a sense
that the goals are achievable is magical. It builds long term
engagement and keeps players involved with your game ever
longer, provided the experience is sufficiently meaningful.
Keeping players playing longer has a direct impact in their
willingness to spend money in the game. In a 2014 survey by
Unity9, the reported spend by paying players who spend less
than an hour in a game averages at $0.66, but for those who
spend over 10 hours this rises to $15.15.

Designing the Player's Journey
The realization that long term engagement matters has a
profound impact on the way we look at game design. The
idea of a game as a mechanic or story is transformed to the
realization that it is not only our hero character who is going
on a journey, but our player as well. This journey consists of
several stages:

1. Discovery
Players have a particular set of needs and aspirations when
they first encounter your game and there is really very little
beyond the icon and the first sentence of your app store listing
to motivate players to download and play the game the first
time. Despite that setting the right expectations is essential. If
the game charges upfront, let the player know why they should

9 www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-
44-year-olds

Mobile Gaming146

http://www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-44-year-olds
http://www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-44-year-olds

still buy it, and what they will miss out on if they do not. If
the game is free we still have to create expectations, but we
also have to show the player why the advertising is worth the
hassle or if there are in-app purchases, why those players will
feel good about buying them. This is a delicate art.

2. Learning
Once they have taken the choice to install your game we have
to make it as easy as possible to engage. Make the icon and
name of the game instantly recognizable and ideally a tease, a
reason to kick off the app. At this stage we do not want them
to make choices about what characters to play or what levels
they want – they do not know yet. Do not make them sign up
to Facebook or set-up an account before playing – show them
what the game is all about. Then knock their socks off! I often
talk about “The Bond Opening”, comparing this first ever play
of the game to the opening 5 minutes of every Bond movie.
It blows us away and at the same time set up everything we
need to know about the story, super-secret agents and the
world the story takes place in. But it does more than that, it
ensures we never want to leave the seat. It is this dual role of
showing not telling that sets up the expectations for the rest
of the movie which applies to games so well. As this is a game,
we do not want to show or tell, we need to ‘Do!’. Players need
to learn about games by doing and feeling good about their
achievements quickly.

3. Engaging
If we succeed and set up the right expectations to keep them
playing we really start the process of building long term en-
gagement. At this point the player understands the challenge
and progression and is already returning to continue to play for
subsequent sessions. At this stage they should also understand
the value of investing further time or money into the game. It

Mobile Gaming147

is much easier to sell IAP and leverage the use of Opt-In Ads
to players who already get the benefits of the game. Sustaining
this over the longer term however is challenging. We need
longer term 'achievable' goals as well as events and social
engagement if we are to keep players, and we have to do all
this without over-complicating the game.

3.1 Potential To SuperEngage
Players are not all created equally when it comes to their

desire to spend money in your game. Some players become
'Super-fans' who actively desire more and more items to
enhance their playing experience. The game becomes their
'Hobby' and something they may be willing to invest beyond
the price of a cup of coffee. This generally happens only after
they fully engaged and where the developer is able to focus
on delivering value for that player. It is important not to
confuse these players with people who are addicted. Addiction
is where individuals have a compulsion which overwhelms
their otherwise rational behavior. In practice the majority of
true fans are rational people who have made your game their
principle hobby. Addictive behavior is always detrimental to
the individual and we should do everything we can to help
anyone with these kinds of issues.

3.2. Re-engagement
Players who have become engaged will still have a lifecycle;

but it may become possible to re-engage them when you add a
new update, new content or even events inside the game.

4. Churning
The final lifestage we have to acknowledge is “Churning”. It is
inevitable that in the end players will stop playing our game.
We want to delay that as long as possible, but to fail to plan
for that is going to cause us more problems.

Mobile Gaming148

Analytics and Game Flow

Making a game is a little like designing an experiment;
especially in this data rich, connected era of lean development
and minimum viable products. We make a hypothesis and test
it as simply as possible. We want to know as fast as possible
if we are on to something or not, ideally before spending a lot
of money on unnecessary development. That means we need
analytics to help us understand what is going on at every life
stage.

First, we do not have to capture everything. There are
some kinds of data which are static, reference information.
For example, the specific position in a specific map. As long
as the version of the map used at that time is known then
X,Y,Z coordinates alone can be used to create a heat map later.
We can also infer a lot of data from other events as long as
there is some connecting information. For example, we do
not need to capture the level that the player is using for that
game in every event or even a list of all the players in that
session. We can capture that information with a specific ‘Start
Session’ events and use the associated session ID to allow us
to identify everything that happened in that specific game
session. Most commercial analytic platforms will automatically
capture common data sets like date/time, X,Y,Z etc into their
event collection process.

We also have to understand is that the data we collect will
always be incomplete, for example if the battery dies or the
player switches to a phone call – we will probably not get the
last upload. This is less of a problem with a server-based game
but it is never 100% and the compromise is that the game
cannot be played offline; impacting our chance for them to
create habits of play.

We have a duty to treat player data very carefully, we need

Mobile Gaming149

to make sure that players remain anonymous. We do not want
or need to spy on our players but we do need to understand
how the game plays across all players without falling foul of
data protection (especially related to children). In case of any
doubt make sure you get qualified legal advice.

What Events Should We Capture?
When considering which events to track, think of them in
terms of the timeline in which the player might encounter
them. There will of course be a first-time player experience,
but it can also be useful to map out more commonly experi-
ence 'Engaged player' session flow. We are not necessarily
mapping every button press directly. Instead you should look
for moments where there are meaningful choices. There is an
approach used by the food industry called HACCP10.

Some typical events worth tracking might include the
following:

 — GameMenuLaunch: AnonPlayerID; TimeIconLaunched
 — SessionLaunch: TimeSessionLaunched;

AnonPlayerID(s); SessionID; LevelIDSelected; OptionSe-
lected

 — SessionStart: TimeSessionStarted; AnonPlayerID;
SessionID;

 — ObjectiveSet TimeObjectiveSet; AnonPlayerID;
SessionID; ObjectiveID;

 — ObjectiveMet: TimeObjectiveMet; AnonPlayerID;
SessionID; ObjectiveID; Score; Reward; XYZLocation

10 develop-online.net/opinions/navigating-the-hazards-of-game-data/0187815:
In essence the point is that we are looking for the ‘Hazards’ in the flow of
the player experience such as whether they churn (i.e. leave the game) but
also trigger points for more positive action such as paying for an IAP or
watching a video ad.

Mobile Gaming150

http://www.develop-online.net/opinions/navigating-the-hazards-of-game-data/0187815

 — TargetHit: TimeTarge-
tHit; AttackerID(AnonPlayerID?); SessionID;
TargetID(AnonPlayerID?); Damage, XYZLocation

 — PlayerDeath: TimePlayerDeath; AnonPlayerID;
SessionID; XYZLocation

 — LevelComplete: AnonPlayerID; SessionID;
ObjectiveID; Score; Reward; XYZLocation

From creating events in this way we can infer a huge
amount of information. For example, if we want to know the
percentage of players who complete a level we can count
the number of ‘GameMenuLaunch’ events with the number of
‘LevelComplete’. But we can also get smarter with our analysis.
We can look at how many people completed a specific Objec-
tiveID in a specific ‘LevelIDSelected’ and compare that to the
number of ‘LevelComplete’ in the subsequent level to find out if
skipping objectives in earlier levels have a particular impact on
performance later.

Once we have the data we need to be able to use it and
continually review its accuracy and usefulness. Commercial
platforms will often come with comprehensive reporting tools
from basic dashboards with KPIs like D2/D7 Retention, DAU
(Daily Active Users), ARPU (Average Revenue Per User) and
even ARPDAU (Average Revenue Per Daily Active User). There
are two essential tools every developer should look to use.
First there are 'Funnels' which when we set up events in order
of how a player passes through the game we can see where in
the pipeline you have the most problems. The second are heat
maps which put that data into your level in a way which lets
you understand exactly whats going on inside the gameplay
session.

Mobile Gaming151

Free vs. Paid
The arguments between free and paid games have become al-
most tribal amongst game developers asking whether business
models have tarnished the nature of game design, even asking
questions about the morality of these money focused designs.

Looking in economics terms, it is clear what happens when
supply goes up, prices fall. With an effectively infinite supply,
the price falls to zero. This is exactly what has happened and
why Free2Play is so dominant. But wait, what about the 7% of
revenue for iOS on premium games? Successful premium games
are the ones which have been able to attract an audience by
offering something they perceive to be of greater value than
the rest of the games available. Games like Monument Valley or
The Room have shown that this is still possible, and they are
noticed because of their premium pricing. This has not been
at the scale of the revenues of the top performing Free2Play
games, despite considerable profiling by app stores.

The easiest way to understand Free2Play is to realize that
these games have simply taken the retail side inside the
game. That means that the people who know the game and
its players best (i.e. the developers) can identify items that
players will love that compliment and enhance the experience
for all players; and sell them directly to the audience. The
movement towards free has not proved an easy path for many
game providers and attempts to 'clone' the business models of
games like Clash of Clans or Candy Crush have rarely seen even
a comparable level of success. This is despite the formula ap-
pearing on the surface to be so simple and can quickly become
'not much fun' causing a lot of players to churn. If your player
feels that the game is merely an exercise in getting me to
open my wallet, just how engaged will I be as a player?

Advertising is playing an every increasing role in games
and it is fascinating that unlike other media, ads in games

Mobile Gaming152

do not seem to cannibalize the audience. Similar to the way
we are changing how we look at in-app purchases, we are
seeing a movement looking to find way for ads to add value to
the overall playing experience, rather than just blocking the
players progress. It is also fascinating that unlike other media,
ads in games do not seem to cannibalize the audience. The
use of banner ads in a game, which can be clicked accidentally
and take up valuable screen space, is largely being replaced
by interstitials or opt-in video but remains on some highly
successful one-handed quick play games like Sixes from Gram.
We are also starting to see the introduction of brand based ads
which, perhaps surprisingly, seem to add a level of credibility
to the whole experience; apparently seeing an ad from Coke or
Audi makes players gene more engaged.

What ever business model you try, Free/Paid/DLC/etc the
same basic design rules apply.

Seven Rules of Monetisation Design for Games

Rule 1: Utility
Everything starts with utility, an economics term in this case
used to express the 'expectation of value' for the player. In
Free2Play players are usually not buying the 'gems' or what
ever currency you might be using because they are so shiny.
Buyers are driven by the expectation of what gameplay these
items will unlock. The same principle applies even if you are
charging for access to the game. It is not the physical delivery
or the download size that players value but the anticipation of
the game.

While in premium games we earn money before the users
are actually experiencing it (apart from potential additional
DownLoadable Content (DLC)), for free2play games the
lifecycle of the player after the initial download plays a critical

Mobile Gaming153

part in monetization. With this in mind it is often helpful to
break your game into three sections:

 — Mechanic: The core element of play - usually a loop usu-
ally with some kind of challenge; resolution and reward

 — Context: A mechanic used to drive a sense of purpose and
progression including narrative, unlock tree, boss modes,
etc.

 — Metagame: The elements that are not about the pixels
including collaboration, clan systems, mode of use of the
devices, etc.

Each of these stages may include an opportunity for the use
of an in-game advert or in-app-purchase (IAP)

The levers we use to add value will usually be different in
the different stages of the experience. Consumables which
work as a part of the mechanic, might be inappropriate for
the context or metagame. Splitting the experience down into
sections allows us to understand where the value really is and
keeps the focus on the benefits for the players. We can also
use this mindset to rethink how we use ads especially opt-in
video ads. They can now become a method to extend players
behavior, e.g. watch an ad to get a free power-up you have
not tried before. Once the player tries it hopefully they will be
more inclined to spend a little money on a bundle of 10. Each
purchase decision has a different impact depending on where
in the game it occurs as well as the players lifecycle. The use
of analytics and even machine learning can transform our
success as long as we set-up meaningful tests.

To be more specific about what monetization elements
we want to use in our game design it is worth looking at it
through the lens of our game design toolkit.

Mobile Gaming154

This start by looking at the types of goods in games:

 — Sustenance: What are the elements we require to continue
playing?

 — Shortcuts: What factors increase our chance of success or
reduce the impact of failure?

 — Socialisation: How can players express themselves and
their progress in the game?

 — Strategy: Can we introduce new playing options (without
breaking the game)?

Those goods come in different forms as well:

 — Consumable: A one-time use item.
 — Capacity: Something which limits growth/play
 — Permanent: A permanent upgrade or unlock item
 — Generators: An increase in the supply of a consumable

When we combine the type and form this creates a powerful
way to assess your game's monetization model.

GOOD/TYPE Consum-
able Capacity Generator Aspiration

Sustenance Fuel Fuel Tank Gas Station Better Car

Shortcut Strength
Potion

More
Strength

Alchemist Improved
Recipe

Social Heart Gift Supporters Wanderers New Outfit

Strategy Door Key New Tool Booster
Pack

Red Katana

Mobile Gaming155

Let me illustrate this with a concrete example: We have a
driving game where we use fuel as an energy mechanic; but
we may decide that you cannot buy fuel (we do not want it to
feel like a tax) but we do allow players to watch an opt-in ad
to refuel once per 24 minutes. Players can also upgrade the
size of their fuel tank which means they get more plays before
running out. Then we can have a gas station which means they
can replace their fuel faster than before. Finally we have the
better car which we desire because it adds advantages; but
it also has consequences e.g. using more fuel making this a
playful choice - not just an upgrade.

Rule 2: Anticipation
An essential element of monetization design is how we com-
municate the Utility we are creating to the player. There are
generally four forces preventing a player making a purchase:
Uncertainty of outcome, Social issues, Opportunity costs and
External needs.

A hard lesson from this is that we cannot make people pay;
and although it might be possible to manipulate people in
the short term that is not sustainable, counterproductive and
damages trust for everyone. Instead, we need to create the
conditions where people can give themselves permission to
play. This means we need to create the following four factors:
Expectation of delight, Social capital, Call to action and
Abnegation of other priorities.

Mobile Gaming156

Rule 3: Scarcity
Just like in the real-life economy, scarcity is also a vital aspect
of the economy of your game. However, when creating scarcity,
do not forget about rule1: Utility. Any use of scarcity has to
be authentic and focus on the enjoyment of the game. Adding
opt-in video ads or IAP must be an extension of our overall
design and we must consider how spending affects the balance
of the game to avoid creating a 'Pay To Win' model (better
described as a broken game).

Vital to scarcity is to look at the opportunities in play and
through pay to earn those scarce resources and currency and
to make sure that you have designed appropriate 'resource
sinks' which ensure are not directly about 'winning'. We need
soft variables of success to deliver the maximum Utility to the
player.

Look at the game Rock-Paper-Scissors. Imagine we have
two upgrades 'lizard' and 'spock'. Because these new shapes
can both win and lose against the others the actual chance of
random success is unchanged. There is no technical advantage.
However, there is a psychological advantage as well as increas-
ing complexity limiting peoples ability to second guess their
opponent.

Rule 4: Timing
Players needs are not static. This is especially important in
free2play games but also affects players willingness to make
DLC purchases in premium games. As developers we have
to think about the player lifecycle and how that impacts
players willingness and interest in making purchases. It is
also important that the game feels alive through community
engagement, events and regular predictable updates.

 — DISCOVERY: Will the player Install then play or not
 — LEARNING: The player not only has to learn the game; but

if it will become part of their routine
 — ENGAGING: The player is committed to the game and

exploring if they are willing to spend
 — POTENTIAL SUPER-ENGAGE: Is this a player willing to

invest more in this game than average
 — REENGAGEMENT: Player is at risk of churning; can we

bring them back
 — CHURN: Player has moved on to the next game

MAXIMIZING
UTILITY

BUYER
REMORSE

initial interest

INTEREST

TIME

ANTICIPATION NEEDED
TO PURCHASE

TRUE
ENGAGEMENT

Mobile Gaming158

If we understand the status of the player we can be in a
better position to understand what they value and how we can
make offers which extend their lifecycle and their life-time
value.

Rule 5: Repetition
Repetitive actions can become intrinsically rewarding and
this can also help build positive habits as well as building
trust with your players that they can obtain the Utility they
anticipate from your game. Highly repeatable game mechanics
are essential to monetization success, especially on mobile
where we can play repeatedly throughout the day.

This is reflected in the rapid increase in the willingness
of player to spend more the longer they have engaged with a
game.

In 2014 Unity Ads did a survey with 3000 online partici-
pants which showed a clear correlation between longer play
time and increase revenue. This was not just linear either.

HOURS PLAYED AVERAGE SPEND

10+h $15.15

5-10h $4.90

1-4h $2.55

<1h $0.66

ALL $4.58

Mobile Gaming159

However, it is also important to avoid player fatigue. This
means giving players natural breaks where they can switch
between 'Frustration' to 'Relief'; from 'Intensity' to 'Relaxation'
and feel that they can break away from the game with a
reason to return later. Otherwise they may burn out. This can
play an important part in the placement and use of different
ad formats. Blocking ads like full screen interstitials can be
frustrating so work best on screens where the player can rest.
On the other hand opt-in ads are less frustrating and by their
nature offer the player 'Utility' in return for engaging but this
creates another design problem. We have to think about what
benefit makes the most sense for the player to watch that ad -
it is almost an extension of the thinking we need to do for IAP.

One of the keys to sustaining interest over long periods of
play lies in the use of predictable uncertainty. Take 22 Cans
game, The Trail. In this game, items we may need for crafting
appear along the trail at apparently random intervals, we can
only carry so much in our bag and each time we take the walk
we have to decide if we will pick up those items we find. If we
do we risk not having enough space for a specific item we may
need to progress. It is predictable we will get those items; but
uncertain when so the player is entertained by the time they
spend looking whether they appear or not. The act of looking
does not become boring even though it is repetitive because it
retains a sense of unfulfilled anticipation.

Mobile Gaming160

Rule 6: Evidence
We have talked about the importance of data and at the risk of
repetition here is a set of practical steps you can go through
to start the process.

1. Define the objective Ask why you want this data and set
clear objectives on what you expect the data to tell you

2. Identify what you can measure Identify what data points
will help us answer the questions laid out in our objectives

3. Identify player decision points Identify the trigger
actions in the game which indicate player decisions

4. Define common events What do not we have to specifi-
cally collect and which data point allow us to compare
events across the game e.g. AnonPlayerID; SessionID/etc

5. Identify reference data I.e. What do not we have to
specifically collect because these data points do not
change during a player session (i.e. we need not repeat-
edly capture them)

6. Select your analytics platform Do you make you own or
use an external provider such as Unity Analytics

7. Segment your data Create custom cohorts so you can
compare different parts of your audience or different
builds of your game, etc.

8. Create funnels, heat maps, define KPIs as required to
track your games performance

9. Continue to iterate and test your reporting process as
well as your game

Rule 7: Scale
The most troublesome rule; and perhaps the one rule to rule
them all. Scale matters. We need an enormous volume of play-
ers watching a significant number of ads per day in order to
generate measurable revenues just on ads. Typically 30%-50%
of players choosing to watch an opt-in ad. IAP are much rarer,
but their value is more tangible. Typical games see 2-3% of
players spending on IAP of the whole base which downloaded
the game. However, this statistic really misses the point. The
percentage of people who spend the most money will be those
who remain playing your game longest. At 30 days we expect
to see less than 10% of the original downloads. If the average
spend on any item in the games is as little as $1 this also
depends on scale.

Scale is not just about the number of players. Puzzles and
Dragons and Clash Royale do not have the same size of audi-
ence as Candy Crush but they do see enormous revenues.

The key to scale is getting more players, doing more things,
more often for longer.

This is an industry led by acquisition, retention and moneti-
zation; but we can be smarter if we apply utility, anticipation,
scarcity, timing, repetition, evidence and scale.

Getting Discovered

If you have followed these guidelines then you will have
already put your game design into the best form that suits
your audience and that itself will (hopefully) give you a
fighting chance. However, that alone is not enough. We have
to use every possible communication route we can and that
usually requires investment. It is still possible to succeed
without spending money on advertising, but you have to be
the winner of a global lottery ticket. This applies on mobile
games as on any other kind of mobile app as well. Some hints
how to market your software can be found in the monetization
chapter. Additionally, here are strategies which you might want
to think about especially for games.

Press
Getting noticed by the press can help, particularly if you
participate in games awards such as Pocket Gamer’s Big Indie
Pitch11 or the Indie Awards at Casual Connect12. If you can
get the attention of YouTubers that may also help. However,
the benefit of these activities is rarely measured in downloads.
Instead they give you more credibility especially with the App
Stores.

Advertising
Spending money on advertising can help, but it is important to
realize that you are competing with a lot of people and some
big players who are seeking large audiences. It is important
to remember what you are trying to achieve when creating
an advert. There are two motivations, building awareness

11 www.pocketgamer.biz/events

12 indieprize.org

Mobile Gaming163

http://www.pocketgamer.biz/events/
http://indieprize.org

and direct action (i.e. downloading the game). In games we
are able to put adverts in other games and apps on the same
device we want the players to experience the game. There is
nothing getting in the way between the advert and the app
store. One click and you can buy/download the game. That is
an amazing thing, no other media has that kind of frictionless
experience.

Another peculiarity to be aware of is that the larger the
reach (range of players) you are looking for, the more expen-
sive each of the installs. This is because buying space on an
advertising network is based on a bidding process and the
results will be calculated on the basis of Cost Per Install, Cost
Per Mille (i.e. per thousand) or a blend of the two known as
eCPM (effective CPM) as well as ad networks like Chartboost.
com or AppFlood.com which offer cross promotion.

Video based advertising is growing and allows the player
to instantly understand the nature of the game being shown.
This is often combined, such as with Unity ads13, Vungle.com
and AdColony.com with incentives inside the game – such as
free currency. This kind of incentive is different from external
incentives such as offered by providers like Tapjoy and
importantly is not allowed on Apple’s network.

In Game Events
Regular events and outreach to the community allow us to
sustain and to grow our audience. Building on genuine social
experiences, such as the recording of gameplay videos and
sharing of community data (high scores etc) players can help
reach out to their friends and other potential players via
Facebook, Twitter, Everyplay and YouTube.

13 unityads.unity3d.com

Mobile Gaming164

http://www.chartboost.com
http://www.chartboost.com
http://appflood.com
http://www.vungle.com
http://www.adcolony.com
http://unityads.unity3d.com

Influencer Marketing
2015 marked a point where the role of social engagement
with games hit critical levels and YouTube personalities like
Pewdiepie and Yogscast are having significant impact on the
take up of games, including mobile. Teams like Hipster Whale
and Serious.ly have made engagement with these important
celebrity influencers to help propel their games to the top
of the app store. However, like any medium this is becoming
increasingly commercial but it remains important to consider
the audience and why a YouTuber engaging with your game
will be entertaining for potential players. This is becoming
increasingly professionalized with a rising number of Influencer
Marketing agencies representing the Youtuber and Twitch
communities. However, it is important to recognize that this
comes at a risk if the Youtuber damages their own reputation
such as in Feb 2017 when Disney and Youtube ceased working
with Pewdiepie after a scandal14

eSPorts
On the eSports side it has been interesting to see that as well
as the huge audiences on online channels such as Twitch that
even television channels like ESPN have started to take mass
audiences watching games as seriously as other more physical
sports. The level of talent and professionalism in the eSports
market is now significant and game developers are starting
to consider how this will impact game design. However it is
still the case that there are very few mobile games which can
legitimately claim to have gained a strong enough following.

14 https://www.nytimes.com/2017/02/16/magazine/youtubes-monster-
pewdiepie-and-his-populist-revolt.html

Mobile Gaming165

In Summary

In the end despite all the differences in the details, mobile
is like any other platform. We have to acquire, retain and
monetize our audience. That only happens if we entertain play-
ers in the way that works for their devices. Devices which are
perhaps the most social and most pervasive devices in human
history. Mobile gaming is thriving despite the hurdles and the
lessons learned will affect every aspect of game development.

Mobile Gaming166

The Internet of Things
(IoT)
The Internet of Things (IoT) is the inter-networking of devices,
known as 'things'; whether it be sensors, actuators or gateway
devices that enable such devices to collect and exchange data
to the Internet. When IoT is augmented with multiple things,
typically hundreds or thousands, the technology becomes an
instance of the more general class of cyber-physical systems
- which encompasses technologies such as smart grids, smart
homes, manufacturing, intelligent transportation, smart cities
and traditional machine to machine deployments1. Each thing
is uniquely identifiable through its own embedded computing
system, and is able to interoperate within the existing internet
infrastructure. Experts estimate that the IoT will consist of
about 50 billion things by 20202, while several other big num-
bers are claimed from various industry players. This is made
possible by low-cost hardware, affordable connectivity and
emerging de-facto standards for how devices can communicate.

Just over a decade ago two distinct technology industries,
the mobile industry and M2M3, co-existed while with limited
interoperability between each other mainly due to their
consumer or industrial focus - each boasting trillion dollar
turnovers yet with little shared knowledge and necessary
insights on how to ultimately work together. With the rise of
IoT focusing more on consumer oriented devices there is a

1 for examples of IoT use cases see postscapes.com/internet-of-things-
examples

2 www.eetimes.com/document.asp?doc_id=1321229

3 machine-to-machine, embedded or industrial internet

B
Y

 A

le
x

Jo
ns

so
n

&
 A

ar
on

 A
rd

ir
i

The Internet of Things (IoT)168

http://postscapes.com/internet-of-things-examples
http://postscapes.com/internet-of-things-examples
http://www.eetimes.com/document.asp?doc_id=1321229,

requirement to provide end-to-end services for customers. If
major players had early on identified this need there would
be an abundance of tools and services available to bridge
the two industries, however this has not been the case and
only recently has there been mass panic to provide tools and
services to integrate IoT with modern mobile devices. Infra-
structure and data collection is not enough, without services
or apps nobody will pay a dime in the end.

One of the drivers we see to help strengthen the bridge
between these industries, is that several traditionally closed
hardware systems are opening up their services via APIs, mov-
ing code bases to Github4 and other open code repositories to
simplify developer access to industrial systems and services. It
is very promising having big industrial corporations like Ford,
GE, Bosch, Cisco and Siemens migrating towards more open
standards, and exposing their industry focused product and
service APIs to developers accustomed to IP-based technolo-
gies. For those in the mobile industry, hooking up phones to
connected things is becoming more common place, and many
hardware devices are starting to rely on supporting mobile
apps to obtain their full functionality range. Moving out of
the self-contained model allows them to release products
earlier and the ability to add features over time by upgrading
firmware, in tandem with updates to their associated mobile
apps.

The concept of releasing in this green banana fashion
has proven very useful from a competitive point-of-view and
thanks to dynamic software architecture, over-the-air updat-
ing, not to mention getting users into the habit to use things
that hardly work when first purchased - as it has generated a
dynamic and thriving relationship between manufacturers and

4 github.com

The Internet of Things (IoT)169

http://github.com

consumers. One of the side effects of this release tactic has
caused a lapse within the field of security5 and has become a
concern not only for consumers but also for manufacturers as
their things are being repurposed, such as the Mirai botnet6
in November 2016 that was responsible for major Internet
disruptions via Distributed Denial of Service (DDoS) attacks.

Roles for Mobile in IoT

There is already a healthy amount of IoT apps available and
you can see three distinct roles for a mobile phone or tablet
within the Internet of Things: It can act as a dashboard for
displaying data, a remote control for IoT devices and systems
or as a gateway for things which do not have their own access
to the Internet and need to tether on the phone's cellular or
wifi connection (e.g. a wearable sports tracker using bluetooth
connectivity).

You might want to argue that there are no specific IoT apps
per se - they are just apps, right? The follow-up would then
be that a mobile device is primarily a client for a cloud-side
database, creating a viewing engine of a database of sensory
information. Yet there actually are several cases where features
of a smartphone come in handy; its off-line capabilities, such
as the ability to read RFID tags (Android), access to local stor-
age, positioning, augmented reality, means for authentication
and conditional access in the field, audio and video capture
- all are of interest when it comes to creating mobile services
for enterprise and industry. Some of these can be instanti-
ated even using a browser, whereas extensions for accessing

5 see the IoT Security Statistics: www.gsma.com/iot/iot-security-industry-
statistics/

6 en.wikipedia.org/wiki/Mirai_(malware)

The Internet of Things (IoT)170

https://www.gsma.com/iot/iot-security-industry-statistics/
https://www.gsma.com/iot/iot-security-industry-statistics/
https://en.wikipedia.org/wiki/Mirai_(malware)

bluetooth Web Bluetooth SIG7 is limited to a few browsers and
to a sub-set of the native bluetooth stack capabilities.

On the manufacturing floor there are hundreds of devices
to communicate with, and we do not expect each and every of
them to have a mobile app on their own any time soon. There-
fore, systems of systems, where groups or families of products
can be controlled from a base line of apps, is a necessity as
well as alternatives to the consumer app store model as it does
not rhyme well with the industry's needs and wants.

3rd party tools for faster development

While many developers still use native mobile developer
toolkits as their weapon of choice, third party tools purposely
written for creating IoT software have spawned and proven vi-
able for a number of reasons; they often use web technologies
to create user interface views and they come with prewritten
components for cloud services, hardware libraries or connectiv-
ity. Each market segment within IoT - from wearables, real
estate automation, medical applications to surveillance and
fleet management - has their own special needs and challeng-
es: offline usage, large datasets, need for strong encryption,
real-time lag free interaction, high demands on bandwidth
and/or accessibility on a global scale. No single tool or library
covers all use cases.

One of the more popular base technologies for hybrid solu-
tions is Apache Cordova8, sibling to its commercial incarnation
Phonegap9. By its open plug-in architecture, web and native
components (purposely built for each target operating system)

7 www.w3.org/community/web-bluetooth

8 cordova.apache.org

9 phonegap.com

The Internet of Things (IoT)171

https://www.w3.org/community/web-bluetooth/
http://phonegap.com

can be mixed and matched freely, with the end goal to create
either an application for publishing on the relevant distribu-
tion channels. There are also tools and libraries available
outside of Cordova, while few are focused solely on IoT
application development, they may well have functionality
useful to industrial service development.

Several commercial hybrid SDKs use Cordova as one
cornerstone, others rely on C# or C++. Here is a list of relevant
frameworks:

 — Evothings Studio, a rapid development suite for native/
hybrid apps using JavaScript: evothings.com/download

 — IBM Mobile First, for enterprise and industrial tools
(mainly for iOS): ibm.com/mobilefirst

 — Intel SDK, a generic toolkit for enterprise and industry:
software.intel.com/en-us/intel-xdk

 — Ionic, a set of front-end development tools, addressing
multi-platform UI: ionicframework.com

 — RAD Studio, tools for Pascal and C++ builders:
embarcadero.com

 — Waygum, an application platform for mobile IoT, with
mobile front-ends: waygum.com

 — Xamarin, framework for C# development, supports many
native features: xamarin.com

172

https://evothings.com/download
http://www.ibm.com/mobilefirst/
https://software.intel.com/en-us/intel-xdk
http://ionicframework.com/
https://www.embarcadero.com/
http://waygum.com
https://xamarin.com

Communications and Protocols

One of the standing issues in development for the Internet of
Things (IoT) is the occurrence of exotic communication proto-
cols for a mobile programmer, with names like XMPP10, MQTT11
and CoAP12. Smartphone apps need ways to communicate using
some of these protocols to interact with devices running as
IoT. Thankfully some implementations are available such as the
Eclipse Paho project which includes an Android client13. MQTT
can run both over raw TCP/TLS sockets and Websockets, which
allows also this format to run inside a web browser.

To be able to interact over low-level TCP and UDP based
networking, transport security et cetera, technologies like
Chromium sockets (i.e. Berkeley sockets nicely wrapped for
JavaScript developers) available as plug-in technology for
Apache Cordova needed to be introduced. Establishing mobile
plug-in support also for TLS (Transport Layer Security) is also
a step forward towards end-to-end strong security from sensor
to mobile device safeguards IoT services from many of the
uncertainties that face web services and APIs exposed to the
public Internet. Coming from the old embedded world can
be scary for an organization who has been enjoying bespoke
networking not sharing cables with anyone, and then in the
flash of an instance after connecting a HTTP gateway to the
old M2M system, get all the possibilities, horrors and problems
that the internet residents have seen for more than 20 years.

10 xmpp.org

11 mqtt.org

12 tools.ietf.org/html/rfc7252

13 eclipse.org/paho/clients/android

173 The Internet of Things (IoT)

http://xmpp.org/
http://mqtt.org/
http://tools.ietf.org/html/rfc7252
http://www.eclipse.org/paho/clients/android/

174

Securing the message payload, rather than securing the
channel allows even public networks, even WiFi hotspots to be
used. Otherwise, end-to-end security will be hard to achieve as
they are often many moving parts in IoT projects.

IoT apps proved over time to be more than simple web-
based database clients, and will be doing much more than
visualizing server-side generated data views. A second wave
of apps is coming our way in where IoT mobile services for
phones converse directly over short-range radio, using low-
level IP-based protocols for sensor data and telemetry messag-
ing with a minimum of overhead. The prevailing standard here
is Bluetooth Smart, which lately has acquired an increased
sense of security, longer range as well as meshing capabili-
ties. Two of the most interesting application thereof are both
chipsets allowing the bluetooth radio to be in announcement
(broadcasting) mode and connect services concurrently, which
takes Bluetooth as a concept beyond the somewhat limiting
one-phone-one-device concept. The other being the open
Eddystone bluetooth beacon format, assisting in having users
consume contextually relevant mobile services on location
without access to any centralized hub or third party servers. It
allows end-users to discover and evaluate services limited to a
geographical area, a service type or system role.

The Internet of Things (IoT)

Learn More

 — Introductory article comparing IoT protocols: electron-
icdesign.com/embedded/understanding-protocols-behind-
internet-things

 — A Cisco view on IoT Application Protocols: blogs.cisco.
com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols

 — Scaling the Internet of Things Video by Yodit
Stanton recorded at ODI Summit 2015: youtube.com/
watch?v=MP2HLCNPgJ0

 — Eclipse IoT protocols: iot.eclipse.org/protocols.html
 — Realtime data with MQTT, video covering MQTT and IoT

topics: youtube.com/watch?v=gj8mcn9oWgE
 — IoT Demonstration using WebSockets: developer.mbed.

org/cookbook/Internet-of-Things-Demonstration
 — Vision Mobile report on the IoT landscape: visionmobile.

com/product/commerce-of-things-2015

http://electronicdesign.com/embedded/understanding-protocols-behind-internet-things
http://electronicdesign.com/embedded/understanding-protocols-behind-internet-things
http://electronicdesign.com/embedded/understanding-protocols-behind-internet-things
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
https://www.youtube.com/watch?v=MP2HLCNPgJ0
https://www.youtube.com/watch?v=MP2HLCNPgJ0
http://iot.eclipse.org/protocols.html
https://www.youtube.com/watch?v=gj8mcn9oWgE
http://developer.mbed.org/cookbook/Internet-of-Things-Demonstration
http://developer.mbed.org/cookbook/Internet-of-Things-Demonstration
http://www.visionmobile.com/product/commerce-of-things-2015/
http://www.visionmobile.com/product/commerce-of-things-2015/

To end this chapter in a progressive manner, here are some
good starting points, representing some of the stakeholder
of the industry, software, hardware, aggregators and service
providers.

 — Estimotes Blog: estimote.com, Manufacturer of iBeacons
and mobile SDK

 — Evothings Studio examples and templates: evothings.
com/developer

 — RIoT Secure Blog: riotsecure.se/blog, Developer focused
awareness of security within IoT

 — IBMs IOT Foundation: internetofthings.ibmcloud.com, IoT
cloudware & apps

 — IFTTT: ifttt.com, If-This-Then-That - a cloud company
connecting events over the internet

 — Intel IoT, and the Intel XDK: software.intel.com/en-us/iot,
Devtools for micro-controllers and mobile apps

 — Phant by Sparkfun: data.sparkfun.com, Maker of IoT
hardware and accessories, here linking to their nifty IoT
server-side backend, perfect for app makers who want to
own their own data.

 — Particle.io: particle.io, Maker of IoT hardware and acces-
sories, with own cloud for data collection and analytics

http://estimote.com/
https://evothings.com/developer
https://evothings.com/developer
http://riotsecure.se/blog
https://internetofthings.ibmcloud.com/
http://ifttt.com/
http://software.intel.com/en-us/iot
http://data.sparkfun.com/
http://particle.io

Artificially Intelligent Apps
Today artificial intelligence (AI) is all the rage – does it make
sense to make your app smart and how could you do that?
Read on for some perspective on AI in the mobile apps space.

AI Achievements and AI Hype

We have made big advancements in specific aspects of intel-
ligence, sometimes exceeding average human capabilities:

AI tops the best players of the world in some games such as
Reversi, Chess, Go, certain Poker variants or even Ms. Pac-Man1.
When limited to one surgery procedure an autonomous robot
even outperforms human surgeons2. Self-driving cars will not
only lead to fewer accidents but will also axe jobs in logistics.
It even might tempt us to move farther out of the cities as we
can be productive during the ride. Additionally, AI algorithms
have learned to lie when negotiating3 or when playing poker4.
And AI even can create new AI algorithms5, and deblur
images6.

The achievements of AI are surely impressive - then again,
AI has a history of over promising which led to several cycles
of investment followed by an abandonment of research and

1 wired.com/story/mircosoft-ai-ms-pac-man

2 techcrunch.com/2016/05/04/robot-surgeon-outperforms-human-colleagues-
doing-same-procedure

3 theregister.co.uk/2017/06/15/facebook_to_teach_chatbots_negotiation

4 steemit.com/ai/@sykochica/ai-learns-to-lie-and-beats-humans-at-poker

5 technologyreview.com/s/603381/ai-software-learns-to-make-ai-software

6 arstechnica.co.uk/information-technology/2017/02/google-brain-super-
resolution-zoom-enhance

B
Y

 R

ob
er

t
Vi

rk
us

Artificially Intelligent Apps178

https://www.wired.com/story/mircosoft-ai-ms-pac-man/
https://techcrunch.com/2016/05/04/robot-surgeon-outperforms-human-colleagues-doing-same-procedure/
https://techcrunch.com/2016/05/04/robot-surgeon-outperforms-human-colleagues-doing-same-procedure/
http://www.theregister.co.uk/2017/06/15/facebook_to_teach_chatbots_negotiation/
https://steemit.com/ai/@sykochica/ai-learns-to-lie-and-beats-humans-at-poker
https://www.technologyreview.com/s/603381/ai-software-learns-to-make-ai-software/
https://arstechnica.co.uk/information-technology/2017/02/google-brain-super-resolution-zoom-enhance/
https://arstechnica.co.uk/information-technology/2017/02/google-brain-super-resolution-zoom-enhance/

commercial activities in that area. Vernor Vinge, for example,
predicted in 1993 that we will reach the point of singularity7
at which AI surpasses human intelligence within the next
thirty years (until 2023). This seems highly unlikely in 2017.
Creating general artificial intelligence seems to be difficult,
maybe because we still do not understand the concept of
intelligence8 fully. Also, we just do not know what will happen
if AI reaches human intelligence – will it then be simple to
scale beyond our intelligence?

Artificial intelligence may be overhyped, but we might very
well arrive at the tipping point soon, at which AI suddenly
influences our lives to a large degree.

AI Terms and Technology

Let us start with a very short primer on AI terminology and
state of the art. Hidden underneath the umbrella term artificial
intelligence lies a whole word of different set of technologies.
We are still far away from a general or strong intelligence that
combines all different aspects of intelligence. And no, it is
not only machine learning, even though that aspect is getting
most of the press hype nowadays.

Arguably the most important aspects of AI include the
following:

 — Machine learning allows computers to improve automati-
cally with experience. Deep neural networks are often used
for this task.

 — Pattern recognition allows computers to recognize input
such as handwriting, faces or objects.

7 edoras.sdsu.edu/~vinge/misc/singularity.html

8 en.wikipedia.org/wiki/Intelligence

Artificially Intelligent Apps179

http://edoras.sdsu.edu/~vinge/misc/singularity.html
https://en.wikipedia.org/wiki/Intelligence

 — Pattern prediction allows to predict the future positions
of previously recognized objects from a series of inputs.
According to Jeff Hawkins: “Prediction is not just one of
the things your brain does. It is the primary function of
the neocortex, and the foundation of intelligence.”9

 — Artificial knowledge is often formulated in hierarchical
ontologies. This not only requires a lot of manual work, it
also misses out unconscious feelings about or subsymbolic
meanings of a certain situation that us humans know
about. So, there is a lot of work to automate this process
and to understand subsymbolic meanings better.

To learn more about foundation of AI just head on to
Wikipedia10 for a detailed overview.

9 Jeff Hawkins: On Intelligence (Owlett Paperbacks 2005), p89

10 en.wikipedia.org/wiki/Artificial_intelligence

https://en.wikipedia.org/wiki/Artificial_intelligence

11 research.ibm.com/articles/brain-chip.shtml

12 en.wikipedia.org/wiki/Tensor_processing_unit

13 nervanasys.com

Layers of AI Tools

The world of AI is somewhat overwhelming at first, so you
should know that there are different layers that you can use,
depending on your expertise, your problem and the data you
have at hand.

Layer Description Examples

Hardware Hardware
optimized for
processing AI
algorithms

 IBM True North11, Google Tensor
Processing Unit12, Intel Nervana13

Algorithm Create your
own problem-
specific
algorithms

Neural Networks, Hidden Markov
Model, Linear Regression, Naïve
Bayes

Artificially Intelligent Apps181

http://research.ibm.com/articles/brain-chip.shtml
http://en.wikipedia.org/wiki/Tensor_processing_unit
http://nervanasys.com

14 tensorflow.org

15 microsoft.com/en-us/cognitive-toolkit

16 deeplearning.net/software/theano

17 torch.ch

18 caffe.berkeleyvision.org

19 caffe2.ai

20 aws.amazon.com/machine-learning

21 mxnet.io

22 dev.cyc.com

23 azure.microsoft.com/en-us/services/cognitive-services

24 aws.amazon.com/amazon-ai/#ai_services

25 cloud.google.com/products/machine-learning

26 cloud.google.com/products/machine-learning

27 havenondemand.com

28 api.ai

29 dev.cyc.com

Layer Description Examples

Model Use an existing
algorithm but
train it with
your problem-
specific data

 Tensor Flow14, CNTK15, Theano16,
Torch17, Caffe18, Caffe219, Amazon
Machine Learning20, MXNet21, Cyc22

API/Online
Service

Use an online
API

Microsoft Cognitive Services23,
AWS Amazon AI24, Google Machine
Learning Services25, IBM Watson
Services26, HPE Haven OnDemand27,
api.ai28, Cyc29

Artificially Intelligent Apps182

http://tensorflow.org
http://microsoft.com/en-us/cognitive-toolkit
http://deeplearning.net/software/theano
http://torch.ch
http://caffe.berkeleyvision.org
http://caffe2.ai
http://aws.amazon.com/machine-learning
http://mxnet.io
http://dev.cyc.com
http://azure.microsoft.com/en-us/services/cognitive-services
http://aws.amazon.com/amazon-ai/#ai_services
http://cloud.google.com/products/machine-learning
http://cloud.google.com/products/machine-learning
http://havenondemand.com
http://api.ai
http://dev.cyc.com

30 allo.google.com

31 techcrunch.com/2017/05/17/google-lens-will-let-smartphone-cameras-
understand-what-they-see-and-take-action

32 faceapp.com

33 prisma-ai.com

34 deepart.io

35 goart.fotor.com

How AI is Used in Apps

There are a billion use cases for weak AI, but how is AI being
used in apps today? Here are some examples:

 — Google Allo30 is providing context-dependent, AI generated
“smart replies” that take your personal style into account
and that includes image recognition.

 — The Google Lens31 camera app recognizes objects and
metadata and provides matching interactions like “save
event to calendar” or “buy tickets” when you photograph a
concert marquee.

 — There are various photo effect apps that provide AI-pow-
ered artistic effects. FaceApp32 makes you older, lets you
smile or even changes your gender upon demand. Artistic
app examples include Prisma33, DeepArt34, and GoArt35.

https://allo.google.com/
https://techcrunch.com/2017/05/17/google-lens-will-let-smartphone-cameras-understand-what-they-see-and-take-action/
https://techcrunch.com/2017/05/17/google-lens-will-let-smartphone-cameras-understand-what-they-see-and-take-action/
https://www.faceapp.com/
http://prisma-ai.com
https://deepart.io/
http://goart.fotor.com

36 techcrunch.com/2017/05/11/microsofts-windows-story-remix-uses-machine-
learning-to-make-your-videos-look-awesome

37 for further examples see en.wikipedia.org/wiki/Artificial_intelligence_in_
healthcare

38 skinvision.com

39 microsoft.com/en-us/seeing-ai

40 skype.com/en/features/skype-translator

41 app.beerai.com

 — Microsoft’s Story Remix36 app combines face recognition,
object recognition, movement following and 3D technolo-
gies for impressing video editing power.

 — In healthcare37, companies such as SkinVision allow
everyone to diagnose moles for possible skin cancer38.

 — Microsoft's Seeing AI39 describes people, objects and texts
for visually impaired persons.

 — Skype40 now offers a real-time voice translation between 8
languages.

 — And finally, BeerAI41 suggests beer brands based on your
current preferences.

https://techcrunch.com/2017/05/11/microsofts-windows-story-remix-uses-machine-learning-to-make-your-videos-look-awesome/
https://techcrunch.com/2017/05/11/microsofts-windows-story-remix-uses-machine-learning-to-make-your-videos-look-awesome/
https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare
https://en.wikipedia.org/wiki/Artificial_intelligence_in_healthcare
https://skinvision.com/
https://www.microsoft.com/en-us/seeing-ai/
https://www.skype.com/en/features/skype-translator/
http://app.beerai.com/

42 https://aws.amazon.com/amazon-ai

43 https://api.ai

44 https://cloud.google.com/products/machine-learning

AI Tooling

So, what should a mere mortal do when you want to add
intelligence to your app? This depends on your know-how, your
target platforms and your goals.

Online Services
The easiest initial step is to use one of the many AI services
out there. With only little configuration setup you are up and
running and can process natural language input, recognize
objects in videos or translate audio. A drawback is the data
leakage, as the data of your users is processed in services not
controlled by you. Another drawback is that it may be more
difficult to differentiate from competitors. Last but not least,
if your central idea is focused on AI, you do not want to use
external services for that. The following table lists popular AI
services.

Name Service

AWS Amazon AI42 Natural language understanding, automatic
speech recognition, visual search, image
recognition, text-to-speech, machine learning

API.AI43 Natural language processing

Google Machine
Learning
Services44

Machine learning, job search, video analysis,
image analysis, speech recognition, text
recognition, translation

Artificially Intelligent Apps185

https://aws.amazon.com/amazon-ai
https://api.ai
https://cloud.google.com/products/machine-learning

45 https://www.havenondemand.com

46 https://console.ng.bluemix.net/catalog/?category=watson

47 https://azure.microsoft.com/en-us/services/cognitive-services

48 https://wit.ai

Name Service

HPE Haven
OnDemand45

Audio, video & image analysis, indexing &
search, text analysis, format conversion

IBM Watson
Services46

Conversation, discovery, document conversion,
translation, natural language classification &
understanding, personality insights, retrieve
& rank, speech-to-text/text-to-speech, tone
analysis, visual recognition

Microsoft Cogni-
tive Services47

Vision (face, emotion, video, content,
custom), speech (translator, speaker recogni-
tion, custom), language (understanding,
spell check, text analysis, linguistic analysis),
knowledge (recommendation, academic,
custom), search (autosuggest, image, video,
web, news, custom)

Wit.ai
(Facebook)48

Natural language processing

Artificially Intelligent Apps186

https://www.havenondemand.com
https://console.ng.bluemix.net/catalog/?category=watson
https://azure.microsoft.com/en-us/services/cognitive-services
https://wit.ai

Chatbot Frameworks
To create a chatbot use one of the many chatbot frameworks
out there. The frameworks typically also offer you to integrate
your chatbot into various channels such as Facebook Messen-
ger, Skype or WeChat. You can discuss various aspects of chat
bot development at chatbots.org and learn more about chat
bots at the chatbotsmagazine.com.

Name Programming
Languages Service

Bot Framework
(Microsoft)49

.NET, Node.js,
REST

Natural language understanding,
automatic speech recognition,
visual search, image recognition,
text-to-speech, machine learning

Chatfuel50 n/a Facebook Messenger, Telegram
(kik, Slack, Viper, WhatsApp
announced)

ChatScript
(Morton,
Willcox)51

Own scripting
language

Manual

Facebook
Messenger
Platform
(Facebook)52

Node.js Facebook Messenger, Website

Motion.ai53 n/a Email, Facebook Messenger, Slack,
Smooth, SMS, Website

49 https://dev.botframework.com

50 https://chatfuel.com

51 https://sourceforge.net/projects/chatscript

52 https://messenger.fb.com

53 https://www.motion.ai

Artificially Intelligent Apps187

https://dev.botframework.com
https://chatfuel.com
https://sourceforge.net/projects/chatscript
https://messenger.fb.com
https://www.motion.ai

Name Programming
Languages Service

Pandorabots54 AIML, Go,
Java, Node.js,
PHP, Python,
Ruby

Manual

Snips.ai55 Any (MQTT) On device voice assistant

On-Device Machine Learning
To ensure privacy and to improve round-trip times, it makes
sense to integrate machine learning routines directly on the
device. This, of course, requires more effort and know-how
compared to using an online API. Find some popular options
here:

Name Platform

Apple Core ML56 iOS

Facebook Caffe257 iOS, Android, Windows

Google TensorFlow58 Android

Qualcom Snapdragon
Neural Processing
Engine SDK59

Android (with supported Qualcomm CPUs
or GPUs

54 https://developer.pandorabots.com

55 https://snips.ai

56 https://developer.apple.com/machine-learning/

57 https://caffe2.ai

58 https://www.tensorflow.org

59 https://developer.qualcomm.com/software/snapdragon-neural-processing-
engine

Artificially Intelligent Apps188

https://developer.pandorabots.com
https://snips.ai
https://developer.apple.com/machine-learning/
https://caffe2.ai
https://www.tensorflow.org
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine

So, What’s Next?

According to Google we live in an AI-first world, but the cur-
rent crop of artificial intelligence pales compared to a general
artificial intelligence60 of the future. – thankfully, there are
already open projects such as OpenAI.com around, that try to
keep such technology open.

The tools are in place, now it is up to you to realize their
potential. While cloud services offer an easy entry, libraries
that run on devices will soon catch up – bringing their privacy
and performance benefits along, but also costing more battery
life. This is when dedicated AI hardware such as IBM’s True-
North chip will play out its strengths. Then running client-side
AI will become common practice.

60 en.wikipedia.org/wiki/Artificial_general_intelligence

189

https://www.OpenAI.com
https://en.wikipedia.org/wiki/Artificial_general_intelligence

Security & Privacy
Readers of this guide know how widespread smart mobile de-
vices have become and how useful mobile apps can be. Mobile
devices are also much more personal than personal computers
ever have been. People wake up with their phones, stay close
to them all day, and sleep next to them at night. Over time
they become our trusted ‘partners’. We are also storing increas-
ing amounts of sensitive data on our phones, such as health
information, and that data is often synchronized with cloud
services, so the security, privacy and integrity of that data is
extremely important to consider.

Many of these apps take advantage of this closeness and
trust. For instance, your phone might be treated as part of the
authentication for accessing your bank account. Or your tablet
could get direct access to the online movies you have bought.
The device might even store a wallet of real money for making
payments with Near Field Communications (NFC), or virtual
money like Bitcoins.

Mobile apps are attracting the attention of hackers and
thieves whose interests extend well beyond getting a 99 cent
app for free. In Q1 2017 Kaspersky Lab detected 1,333,605 ma-
licious mobile installation packages1. A malware named "Judy"
was found in dozens of Android apps and supposedly reached
an astonishing spread of up to 18.5 million downloads2. The
historical network and endpoint based defenses (like anti-virus
tools) are not enough. Embedding security into the mobile
application is critical.

1 securelist.com/it-threat-evolution-q1-2017-statistics/78475/

2 blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-
campaign-found-google-play

B
Y

 D

ea
n

Ch
ur

ch
ill

 &
 N

ei
l C

oo
k

Security & Privacy192

https://securelist.com/it-threat-evolution-q1-2017-statistics/78475/
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/

The architecture of mobile apps continues to evolve. Some
apps are native-only, and require distinctly different code
bases for each different mobile operating system. Some are
web-views, little more than a web site url wrapped in an icon.
Others are hybrids, a combination of native app functional-
ity with web views. Most mobile apps need to connect with
backend services using web technologies to fetch or update
information. Like web apps, classic application security needs
to be used with mobile apps. Input needs to be validated for
size, type, and values allowed. Error handling needs to provide
useful error messages that do not leak sensitive information.
Penetration testing of applications is needed to assure that
identification, authentication and authorization controls can-
not be bypassed. Storage on the devices needs to be inspected
and tested to assure that sensitive data and encryption
keys are not stored in plain text. Log files must not capture
passwords or other sensitive information. SSL configurations
need to be tested.

Users want to use your applications safely; they do not
want unwelcome surprises. Their mobile phone may expose
them to increased vulnerabilities, for instance potentially their
location could be tracked using an inbuilt GPS. The camera and
microphone could be used to capture information they prefer
to keep private, and so on. Applications can also be written
to access sensitive information such as their contacts. And
malicious applications can covertly make phone calls and send
SMS messages to expensive numbers.

The application developer may be concerned about his/ her
reputation, loss of revenue, and loss of intellectual property.
Users may be concerned about the privacy of their private and
often sensitive data stored on the phone (and increasingly
also in the cloud). Corporations want to protect business data
which users may access from their mobile device, possibly

Security & Privacy193

using your application. Can their data be kept separate and
secure from whatever else the user has installed?

Why is Privacy Important?
Many apps store sensitive data that is private to the individual,
such as health data. Even data that may not be considered
sensitive is subject to data privacy laws, and must be treated
appropriately.

When storing user data only on the device, the application
developer is more concerned with security and integrity of
data; protecting it from attackers who attack the physical
device or OS. However, there are potentially still data privacy
implications even if the data does not leave the user's device,
for example in some countries the data protection laws require
"collected data" to be secured from potential abuse, therefore
as a developer you would need to show that you had made an
attempt to follow, for example, the security advice and best
practices in this book.

When storing or synchronizing data to the cloud, a whole
range of data privacy and data protection laws can potentially
come into play, particularly in the European Union. This is
because now you are considered a "data controller" and thus
responsible for the protection of that data. If you are acting as
a supplier, subcontractor or partner to another party, i.e. they
have the relationship with the customer and you are acting on
their behalf, you may be considered a "data processor".

However, even when operating in countries that have
little or no data-protection/data-privacy laws, it is well worth
considering best practice for data privacy, following the recom-
mendations made by the OECD3:

3 oecd.org/sti/ieconomy/
oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.
htm

Security & Privacy194

http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm

 — Data Collection - Ensure that there are limits to the
personal data you collect, and always do so with the
knowledge and consent of the user (e.g. do not collect
data behind the user's back)

 — Quality - Keep personal data up-to-date and relevant to
the purpose for which it is used (e.g. if you do not need to
know the users' age, do not store it)

 — Purpose - When you collect personal data, inform the user
as to why you want to store it

 — Use - Personal data should only be used for the purpose(s)
given to the user at the time of collection, and for nothing
else (e.g. do not tell the user you are collecting their heart
rate to improve fitness, and then disclose that data to
insurance companies)

 — Security - Protect the personal data against unauthorized
access, disclosure or tampering

 — Openness - Users should be able to find out what personal
data you are storing about them

Privacy Laws in the European Union
It would be impossible to summarize worldwide privacy law
in a few paragraphs, but beyond the advice given above, it
is worthwhile understanding that the European Union's data
protection laws go much further than most other countries,
particularly in terms of the obligations and responsibilities of
the "data controller". Many of those obligations are based on
the principles laid down by the OECD, but worth it is worth
pointing out some additional requirements:

 — Transfer of personal data to "Third-Countries" (i.e.
countries outside the EU) - Data may only be transferred
to countries that provide adequate legal protection

Security & Privacy195

of personal data. This typically requires an agreement
between the EU and the countries in question, for example
the United States is covered by the EU-US Privacy Shield
Framework.

 — The European Union has set a deadline of May 2018 for
compliance to the new General Data Protection Regulation
(GDPR)4, which harmonizes and improves the data protec-
tion legislation across the EU. Notably it states that it will
"apply for all non-E.U. companies without any establish-
ment in the E.U., provided that the processing of data is
directed at E.U. residents". If you think your app may be
affected by this legislation, and you have customers in the
EU, it is well worth becoming familiar with EU GDPR.

Finally, it is also worth mentioning that although the
European Union mandates a minimum set of privacy require-
ments, each country implements those into national law in
their own way. For example Germany has even stricter privacy
requirements than European law mandates. Thus, national
privacy laws also need to be considered if conducting business
in EU countries.

4 eugdpr.org

196

http://www.eugdpr.org

Threats to Your Applications

On some platforms (iOS and Android in particular), disabling
the built-in signature checks is a fairly common practice. You
need to consider whether or not it would matter to you if
someone could modify your code and run it on a jail-broken or
rooted device. An obvious concern would be the removal of a
license check, which could lead to your app being stolen and
used for free. A less obvious, but more serious, threat is the
insertion of malicious code (malware) that could steal your
users’ data, or inject illicit content and destroy your brand’s
reputation.

Reverse-engineering your app can give a hacker access to a
lot of sensitive data, such as the cryptographic keys for DRM-
protected movies, the secret protocol for talking to your online
game server, or the way to access credits stored on the phone
for your mobile payment system. It only takes one hacker and
one jail-broken phone to exploit any of these threats.

If your application handles real money or valuable content
you need to take every feasible step to protect it from Man-At-
The-End (MATE) attacks. And if you are implementing a DRM
standard you will have to follow robustness rules that make
self-protection mandatory.

Anytime your application connects to the internet/cloud
and transmits sensitive data such a personally identifiable
information (telephone number, email address, home address
etc.), or information that is private to a user (not just pass-
words), it will typically do so over an insecure network, which
may be subject to pervasive monitoring or Man-In-The-Middle
(MITM) attacks. Your application should ensure that it is using
encrypted transport protocols, and that network endpoints are
suitably authenticated.

Security & Privacy197

Protecting Your Application

Hiding the Map of Your Code
Some mobile platforms are programmed using managed code
(Java or .NET), comprised of byte code executed by a virtual
machine rather than directly on the CPU. The binary formats
for these platforms include metadata that lays out the class
hierarchy and gives the name and type of every class, variable,
method and parameter. Metadata helps the virtual machine
to implement some of the language features (e.g. reflection).
However, metadata is also very helpful to a hacker trying to
reverse engineer the code. Decompiler programs, freely avail-
able, regenerate the source code from the byte code, and make
reverse engineering easy.

The Android platform has the option of using the Java
Native Interface (JNI) to access functions written in C and
compiled as native code. Native code is much more difficult to
reverse engineer than Java and is recommended for any part of
the application where security is of prime importance.

“gcc” is the compiler normally used to build native code for
Android, its twin-sister “clang” is used for iOS. The default set-
ting for these compilers is to prepare every function to be ex-
ported from a shared object, and add it to the dynamic symbol
table in the binary. The dynamic symbol table is different from
the symbol table used for debugging and is much harder to
strip after compilation. Dumping the dynamic symbols can give
a hacker a very helpful index of every function in the native
code. Using the –f visibility compiler switch5 correctly is
an easy way to make it harder to understand the code.

5 http://gcc.gnu.org/wiki/Visibility

Security & Privacy198

http://gcc.gnu.org/wiki/Visibility

Compiled Objective-C code contains machine code and a
lot of metadata which can provide an attacker with informa-
tion about names and the call structure of the application.
Currently, there are tools and scripts to read this metadata
and guide hackers, but there are no tools to hide it. The most
common way to build a GUI for iOS is by using Objective-C, but
the most secure approach is to minimize its use and switch to
plain C or C++ for everything beyond the GUI.

Hiding Control-Flow
Even if all the names are hidden, a good hacker can still figure
out how the software works. Commercial managed-code protec-
tion tools are able to deliberately obfuscate the path through
the code by re-coding operations and breaking up blocks of
instructions, which makes de-compilation much more difficult.
With a good protection tool in place, an attempt to de-compile
a protected binary will end in either a crashed de-compiler or
invalid source code.

De-compiling native code is more difficult but can still be
done. Even without a tool, it does not take much practice
to be able to follow the control-flow in the assembler code
generated by a compiler. Applications with a strong security
requirement will need an obfuscation tool for the native code
as well as the managed code.

Protecting Network Communications
Network communications are vulnerable to snooping and
injection attacks. Apps can be installed and inspected in
emulators or simulators. Network analyzers are freely available
and able to monitor, intercept, change and redirect network
traffic. Some governments monitor electronic communications
for censured topics.

Protect all communications using TLS, (i.e. HTTPS instead
of HTTP). However, that means more than simply enabling
TLS; there are subtleties to encrypted transport that are often
ignored, for example:

 — You should validate that the hostname or common name of
the HTTPS server they connect to is the correct, expected
one.

 — You should ensure that the cipher-suites your app supports
do not include deprecated or outdated algorithms such as
RC4 or MD5.

 — You should authenticate the server certificate(s) against
the keychain provided by the OS, including checking the
host/domain name against the one specified in the URL,
and checking the certificate is still valid.

 — You should not accept self-signed certificates, as these
allow potential MITM attacks.

Downloads of javascript libraries from public sources,
like map libraries, should use HTTPS, as hackers, using MATE
attacks, can inject malicious code into the download if HTTP
is used. Downloads of static content, like pictures, from public
sources, should use HTTPS, as hackers could replace images
with malicious content. One way to step up from transport
security is to use asymmetric encryption between the server
and the mobile app (using public/private key pairs) to provide
end-to-end security.

Security & Privacy200

201

For sensitive corporate data and applications, install Virtual
Private Network (VPN) servers, and install VPN clients on the
mobile devices. VPNs generally provide strong authentication,
and secure transport above and beyond HTTPS.

You can also consider using DNSSEC to verify that the IP
address for the endpoint you are contacting is the correct one,
otherwise attacks such as DNS cache poisoning can be used to
return malicious IP addresses.

Protect Against Tampering
You can protect the code base further by actively detecting
attempts to tamper with the application and respond to
those attacks. Cryptography code should always use standard,
relatively secure cipher algorithms (e.g. AES, ECC), but what
happens if an attacker can find the encryption keys in your
binary or in memory at runtime? That might result in the
attacker unlocking the door to something valuable. Even if you
use public key cryptography and only half of the key-pair is
exposed, you still need to consider what would happen if an
attacker swapped that key for one where he already knew the
other half. You need a technique to detect when your code
has been tampered. Tools are available that encrypt/decrypt
code on the fly, run checksums against the code to detect
tampering, and react when the code has changed. You should
also consider encrypting keys with a user-supplied secret
in cases where that makes sense, although you will need to
provide appropriate warnings about not being able to recover
the data if the user forgets his password!

Security & Privacy

Communications can be monitored and hacked between the
mobile app and backend services. Even when using HTTPS, a
MITM such as an intercepting web proxy (like Paros) can be
setup on a WiFi connection that will inspect encrypted traffic.
This is why it is so important to correctly authenticate server
certificates and validate against the OS root keychain, as the
only way a MITM attack can then succeed is with a wildcard
certificate.

Protecting Cryptographic Algorithms
An active anti-tampering tool can help detect or prevent some
attacks on crypto keys, but it will not allow the keys to remain
hidden permanently. White-box cryptography aims to imple-
ment the standard cipher algorithms in a way that allows the
keys to remain hidden. Some versions of white-box cryptogra-
phy use complex mathematical approaches to obtain the same
numerical results in a way that is difficult to reverse engineer.
Others embed keys into look-up tables and state machines
that are difficult to reverse engineer. White-box cryptography
will definitely be needed if you are going to write DRM code or
need highly-secure data storage.

Best Practices

Do Not Store Secrets or Private Info
Minimize the amount of sensitive information stored on the
device. Do not store credentials or encryption keys, unless
secure storage is used protected by a complex password.
Instead, store authentication tokens that have limited lifetime
and functionality.

Log files are useful for diagnosing system errors and
tracking the use of applications. But be careful not to violate
the privacy of users by storing location information, or logging
personally identifiable information of the users. Some countries
have laws restricting the tracking information that can be
collected — so be sure to check the laws in the countries in
which your app will be used.

Do not print stack traces or system diagnostics that hackers
can leverage to penetrate further.

Do Not Trust The Device
When you design an application, assume that the device will
be owned by an attacker trying to abuse the app. Perform the
same secure software development life cycle when building
mobile apps as you would for backend services. Do not trust
even the databases you create for your mobile apps — a
hacker may change the schema. Do not trust the operating
system to provide protection — many OS protections can be
bypassed trivially by jailbreaking the device. Do not trust that
native keystores will keep data secret — some keystores can
be broken by brute force guessing unless the user protects the
device with a long complex password.

Security & Privacy203

Minimize Permissions
Android has the concept of permissions, iOS has entitlements,
which allow the application access to sensors such as the
GPS and to sensitive content. On Android these permissions
need to be specified as part of creating the application in the
AndroidManifest.xml file. They are presented to the user when
they choose to install the application on their device.

Each permission increases the potential for your application
to do nefarious things and may scare off some users from even
downloading your application. So aim to minimize the number
of permissions or features your application needs.

Perform Threat Modeling
Threat Modeling is a way of designing software and applica-
tions with security in mind. It focuses on key questions such as
those outlined by Adam Shostack in his seminal book on Threat
Modeling6:

 — What are you building?
 — What can go wrong?
 — What should you do about the things that can go wrong?
 — Did you do a decent job of analysis?

There are a variety of techniques for each stage, for example
diagramming your application architecture can be a good start
at the first question, and answering the second question can
be done by using techniques such as STRIDE analysis (Spoof-
ing, Tampering, Repudiation, Information Disclosure, Denial of
Service and Elevation of Privilege).

6 Adam Shostack: Thread Modeling: Designing for Security (John Wiley & Sons,
2014)

Security & Privacy204

Even if you do not use any established techniques for threat
modeling, you should definitely be thinking about the above
questions when designing, implementing and maintaining
your app. These are questions not only to be asked when first
creating the app, but rather continuously as it evolves and you
add new features.

Tools

Protection
Basic Java code renaming can be done using Proguard7, an
open-source tool and Arxan’s GuardIT8.

Two vendors for managed-code (Java and .NET) protection
tools are Arxan Technologies9 and PreEmptive Solutions10.

The main vendors for native code protection tools and
white-box cryptography libraries are Arxan and Irdeto11.

Main vendors for secure mobile source code scanning are
Checkmarx12 and HP13.

Techniques for protecting Android code against tampering
are documented at androidcracking.blogspot.com/. Arxan’s
EnsureIT allows you to insert extra code at build time that
will detect debuggers, use checksums to spot changes to the
code in memory and allow code to be decrypted or repaired
on-the-fly.

7 www.proguard.sourceforge.net

8 arxan.com

9 arxan.com

10 preemptive.com

11 www.irdeto.com

12 checkmarx.com

13 www8.hp.com/us/en/software-solutions/mobile-app-security/index.html

Security & Privacy205

http://androidcracking.blogspot.com/
http://www.proguard.sourceforge.net
http://www.arxan.com
http://www.arxan.com
http://www.preemptive.com
http://irdeto.com
http://checkmarx.com
http://www8.hp.com/us/en/software-solutions/mobile-app-security/index.html

Sniffing
A standard free web proxy tool is Paros14. A standard network
sniffing tool available on common platform is Wireshark15.

De-Compiling
See the Hex Rays de-compiler16.

14 sourceforge.net/projects/paros

15 sourceforge.net/projects/wireshark

16 www.hex-rays.com

Security & Privacy206

http://sourceforge.net/projects/paros/
http://sourceforge.net/projects/wireshark/
http://www.hex-rays.com/products/decompiler/index.shtml

Learn More

Here are some useful resources and references which may help
you:

 — Apple provides a general guide to software security17. It
also includes several links to more detailed topics for their
platform.

 — Commercial training courses are available for iOS and
Android. Lancelot Institute18 provides secure coding
courses covering iOS and Android.

 — A free SSL tester is provided by Qualsys Labs19.
 — Extensive free application security guidance and testing

tools are provided by OWASP20, including the OWASP
Mobile Security Project21.

 — A free mobile application performance monitoring tool for
iOS and Android is the AT&T Application Resource Optimi-
zation tool22.

17 developer.apple.com/library/mac/navigation/#section=Topics&topic=Security

18 www.lancelotinstitute.com

19 www.ssllabs.com/ssltest

20 www.owasp.org

21 www.owasp.org/index.php/OWASP_Mobile_Security_Project

22 developer.att.com/application-resource-optimizer

Security & Privacy207

http://developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
http://www.lancelotinstitute.com
http://www.ssllabs.com/ssltest/
http://www.owasp.org
http://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://developer.att.com/application-resource-optimizer

The Bottom Line

Mobile apps are becoming ever more trusted, but they are ex-
posed to many who would like to take advantage of that trust.
The appropriate level of application security is something that
needs to be considered for every app. In the end, your app
will be in-the-wild on its own and will need to defend itself
against hackers and other malicious threats, wherever it goes.

Invest the time to learn about the security features and
capabilities of the mobile platforms you want to target. Use
techniques such as threat modeling to identify potential
threats relevant to your application. Perform code reviews and
strip out non-essential logging and debugging methods. Run
a secure code analysis tool against your mobile code to find
vulnerabilities. Consider how a hacker would analyze your code,
then use similar techniques, in a safe and secure environ-
ment, against your application to discover vulnerabilities and
mitigate these vulnerabilities before releasing your application.

Pick trustworthy services and partners. Often we use and
rely on third-parties to serve our users and stakeholders. Their
approaches to privacy matter as do their practices. Using
companies who hold themselves to high standards and who are
clear about what they do - and do not do - can help us protect
our users and stakeholders. A good example is appfigure's
Privacy Policy23.

For network-based apps, always use TLS for communication
and ensure you securely authenticate the network endpoints.
And take the time to consider the privacy implications for any
data you collect about or on behalf of the user, particularly if
storing or synchronizing that data into the cloud.

23 appfigures.com/privacy

Security & Privacy208

https://appfigures.com/privacy

Accessibility

Why Accessibility is Important

According to the World Health Organization (WHO) over 15%
of the world's population have some form of disability1 and
rates of disability are increasing due to population aging and
increases in chronic health conditions, among other causes.
This means that around 1 billion potential users could have
difficulties using your app if your app is not accessible.

There has been a huge increase in smartphone and tablet
use in the general population, this is no different for those
with disabilities. The WebAIM Screen Reader Survey2 shows
that there has been an astounding increase in smartphone use
by blind people who use screen readers. Older people might not
have used a computer at work; however they are finding that
they can get to grips with touch screen devices more quickly
than a traditional keyboard and mouse. As our population ages,
the levels of disability increase and this means more and more
people will have difficulty accessing services in the traditional
way. Providing an alternative accessible digital solution, will
ensure disabled people can continue to be independent.

For example, if they are unable to get out of the house to
do their shopping or banking, then providing accessible online
services means they can access these services independently.
It is important to recognize how important independent access
to services is for people with disabilities. Apple have put some
videos together with disabled people showing how they use

1 www.who.int/mediacentre/factsheets/fs352/en

2 webaim.org/projects/screenreadersurvey6/

B
Y

 S

al
ly

 C
ai

n

Accessibility210

http://www.who.int/mediacentre/factsheets/fs352/en/
http://webaim.org/projects/screenreadersurvey6/

technology in their everyday life3. This demonstrates just how
important accessibility is to enabling independence.

There are lots of other reasons to make your apps acces-
sible:

 — Implementing accessibility can often improve overall
usability: For example, if you ensure that every button
and form element has appropriate label, that is helpful to
everyone, not just those with disabilities as the user will
know how to interact with it. Embedding accessibility into
your apps ensures an excellent user experience for all.

 — It just makes good business sense: For example, people
with disabilities have spending power and if they find an
accessible app that works for them they will not only use
it, they will also tell others. You may discover a significant
new market when you develop apps that suit these users.

 — Access to goods and services for all is the law in many
countries: For example in the UK the Equality Act 2010
requires there to be access to goods and services for
everyone and this does include services which are provided
via an electronic means such as websites and apps. Public
bodies also have an anticipatory duty to ensure their
services are accessible, so they cannot consider accessibil-
ity as an afterthought.

 — Where accessible solutions are mandated by legislation,
your app may be the only option for that business to
realistically use: For example, your app may be able to tap
into government funded market sectors such as education
where legislation, such as Section 508 of the Rehabilita-
tion Act in the US, may mandate an accessible solution.

 — The organization that the app is being developed for may

3 www.apple.com/accessibility/stories/

Accessibility211

https://www.apple.com/accessibility/stories/

have a corporate social responsibility (CSR) statement or
program: For example, web and app accessibility provides
social inclusion for the people with disabilities which is a
primary aspect of corporate social responsibility.

 — Mobile platforms from Apple, Google and Microsoft
leverage their accessibility APIs for UI automation testing:
Making your app accessible can make automated testing
easier.

What Accessibility Features?

As many of your potential users may have a disability this
can make it more difficult for them to use a mobile phone
and related apps. Disabilities could include various levels of
sight or hearing impairment, cognitive disabilities or learning
difficulties, physical disabilities, dexterity issues, and so on.

Many of these users rely on third-party software to assist
them in using their devices. This software is sometimes called
Assistive Technology, and includes different utilities depending
on the type of disability. Traditionally these types of software
or utilities have had to be 'added on' to a mainstream device,
often at high cost, in order to make them accessible or easier
to use for someone with a disability. Many smartphones and
tablets now provide robust enough Assistive Technology built
into the operating system that some users with disabilities
can use the devices without needing to pay for extra Assistive
Technology. What is offered depends on the platform and the
version of the OS. However - to work - these features may need
the app to be designed and implemented to support them.

 — Partially sighted users - Someone who is partially sighted
benefits from being able to change the font size, font

Accessibility212

style, colors and use of bold and color contrast too. iOS,
Android and Windows offer various options to change
these in the settings. As well as the universal 'pinch to
zoom' feature, iOS, Android and Windows offer a magni-
fication or zoom feature, which enlarges a section of the
screen and keeps this magnification level when moving
throughout the phone. This has unique gestures associated
with it and often each OS has its own unique gestures. iOS
also has a built in app which utilizes the camera on the
phone to aid with spot reading on items such as clothes
labels and restaurant menus.

 — Blind users - Someone who is blind has to have informa-
tion on the screen and navigation around the screen
announced to them in synthetic speech. This is often
called a 'screen reader'. iOS was the first OS to offer a
screen reader built-in and it is called 'VoiceOver'. Android
offers 'Talkback' which is fast catching up in popularity
with the blind community as it is constantly improving.
Windows first delivered the Narrator screen reader in
Windows Phone 8.1 and it is even more improved now in
Windows 10 Creators Update. Blind users may also make
use of a Braille display, which is an item of hardware
which provides feedback from the screen one text line
at a time in the form of a line of Braille characters. Each
Braille character consists of six or eight movable pins in
a rectangular array. Most OS versions now support braille
displays via Bluetooth.

 — Users with hearing loss - Someone with a hearing impair-
ment will often make use of a smartphone that is hearing
aid compatible and offers features as iOS does such as
'LED Flash for Alerts' or 'Phone Noise Cancellation'. There
are also options in settings for iOS, Android and Windows
to switch on subtitles and captioning. Making use of

Accessibility213

vibration for alerts is also helpful and haptic feedback has
improved in recent versions of iOS in particular. A number
of phones also provide support for hearing aids and tele-
type (TTY) devices4. A TTY device allows people who have
hearing loss or who are speech impaired to type messages
to anyone else who has a TTY, using a telephone line.

 — Users with physical disabilities - If a user has a motor
impairment, they may well be using a third party hardware
product to access the phone, such as a switch as some
devices do support this. Alternatively they could be
making use of voice recognition to access the device. Siri
in iOS now enables the user to access certain settings and
functions and switch them on and off.

 — Users with a learning disability - If a user has a cogni-
tive impairment or learning difficulty, then depending on
what the disability is, they may make use of the features
in the settings that a partially sighted user does. Espe-
cially something like color options. Other users may make
more use of voice recognition.

For people with disabilities, their overall experience is af-
fected by how well an app works with the assistive technology.
As these features are built into the OS and can be switched
on in the settings, it is important that as a developer you
consider that they may be used with your app and ensure you
test for this.

As screen readers and screen magnification in the OS makes
use of their own gestures, gestures in the app may be affected
when screen readers or magnification are enabled. For example

4 A TTY device allows people who have hearing loss or who are speech
impaired to type messages to anyone else who has a TTY, using a telephone
line.

Accessibility214

a screen reader user can navigate a screen using left and
right swipes or by exploring the screen by moving their finger
across the screen of the device in a consistent movement. As
they undertake a swipe, or encounter something underneath
their finger, the item is announced. So an item is selected by
tapping once and opened by tapping twice. When using screen
magnification, depending on the OS, they may need to use a
three finger gesture. Including testing early on with accessibil-
ity features ensures that these gestures are supported by the
app and that any redesign can happen before it impacts on
users.

One of the best ways to learn more about these features is
to switch them on and try them for yourself in different apps.

App Design Guidelines

The accessibility APIs look for text in specific attributes of
standard UI elements. Screen readers used by blind people,
such as VoiceOver and TalkBack, transform the text into
synthetic speech which the user listens to. The screen reader
software may also determine the type of control and related
attributes to help provide the user with more contextual infor-
mation, particularly if no text is available. It is important that
the user understands what the label of the control is, what the
control is and how to interact with it. In some instances there
may also be a tooltip to give extra information.

Just as web developers make use of standards and guide-
lines such as WCAG 2.0 to make accessible websites, it is
important that as app developers, you do the same. At present
there is no de facto industry standard for app accessibility,
although there are standards out there that can help.

The international standard, ISO 9241-171 ('The Ergonom-
ics of Human-system Interaction: Guidance on Software

Accessibility215

Accessibility')5 is a helpful standard as it is platform agnostic.
This covers elements of accessibility and usability for a wide
range of software.

The Royal National Institute of Blind People (RNIB)6 have
created a pan-disability app standard and testing process
based on their experience in this area of accessibility. Their
standard for native apps also reflects on principles from ISO
9241-171. They provide consultancy and training for organiza-
tions and agencies in this area and have an accreditation
badge that can be awarded to apps that, following an audit
process and user testing, are accessible. This accreditation is
called 'RNIB Approved'7.

The BBC have developed a set of BBC Mobile Accessibility
Guidelines8 that they use internally for their mobile content.
Their guidance covers mobile websites, hybrid and native
apps. They state that "they are intended as a standard for BBC
employees and suppliers to follow however they can also be
referenced by anyone involved in mobile development".

Here are some of the principles that are helpful to be aware
of when developing an app. If you stick to them, you will also
give your app the best chance of interoperating with assistive
technology that the user may be running in conjunction with
your software:

5 www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=39080

6 rnib-business.org.uk

7 For more information contact RNIB Business at businesslink@rnib.org.uk.

8 www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

Accessibility216

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.rnib-business.org.uk/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

APIs and UI Guidance

 — Find out what accessibility features and APIs your
platform has and follow the best practice in leveraging
those APIs if they exist.

 — Use standard rather than custom UI elements where
possible. This will ensure that if your platform has an
accessibility infrastructure or acquires one in the future,
your app is likely to be rendered accessibly to your users

 — Use the Accessibility API for your platform, if there is one.
This will enable you to make custom UI elements more
accessible and will mean less work on your part across
your whole app.

 — Follow the standard UI guidelines on your platform. This
enhances consistency and may mean a more accessible
design by default

 — The user should be able to apply their preference settings
that the OS provides, such as accessibility settings.

Navigation

 — Navigation should be logical and consistent. For example
if a back button is provided on each screen it should be
located in the same place on every screen and consistently
labeled.

 — Support programmatic navigation of your UI. This will
not only enable your apps to be used with an external
keyboard but will enhance the accessibility of your app
on platforms such as Android where navigation may be
performed by a trackball or virtual d-pad.

Accessibility217

User elements

 — All user elements should be discoverable and operable
via assistive technology, unless it is clear they are not
required.

 — Where a user element has a status associated with it, that
status should also be available to be read by assistive
technology. For example if a toggle button is ‘on’ this
should be announced by the screen reader. If the status
changes, that should also be announced.

 — Ensure touch screen targets are a reasonable size to ensure
everyone can easily select them.

Labeling

 — All elements, including form elements, buttons, icons and
so on, should be labeled visually and programmatically
with a short and descriptive name. The label should also
be adjacent to the element it relates to.

 — Each screen should have a unique descriptive name that
relates to its content and aids navigation.

Accessibility218

Colors and Fonts

 — Ensure there is a good contrast between background and
foreground colors. In particular consider buttons which
include text. Does the contrast between the text and the
background color meet the ratio requirements in WCAG 2.0
or ISO 9241-171?

 — Avoid using color as the only means of differentiating an
action. A color-blind user will not be able to identify errors
if they are asked to correct the fields which are highlighted
in red for example.

 — Consider the size of your smallest font. Is it reasonable
that most people could read it without difficulty?

Notifications

 — Error messages, notifications and alerts should be consis-
tent, identifiable and clear. They should be announced by
the screen reader and clearly visible, ensuring they do not
disappear from the screen after a short time period.

 — Ensure that error messages, notifications and alerts are
not provided by color/haptic/audible output alone. For
example, someone with hearing loss will not recognize
audible notifications.

Testing

 — Do not forget to test your app on the target device with
the assistive technology built-in to the OS with more than
just the latest OS version. When testing on an Android
device please remember that unless the user has a pure
Android device, like a Google Pixel, they are unlikely to
get access to all of the latest OS upgrades. This is because
for OS upgrades you are at the mercy of your phone
manufacturer, so the Android OS versions in the wild can
be quite diverse. Because some handset manufacturers
skin the OS, this can sometimes interfere with the way the
accessibility features should work. Therefore, it is always
recommended that testing for Android Accessibility is
undertaken on a Google device. That way you can be sure
there is nothing interfering with the way the accessibility
features should work and you are working to a common
denominator.

 — Ensure your user testing includes people with disabilities
too!

Apple, Google and Microsoft, have increased the importance
of their respective Accessibility support by using the Ac-
cessibility interface to underpin their GUI test automation
frameworks. This provides another incentive for developers to
consider designing their apps to be more accessible.

Looking at the different mobile platforms more closely, it
becomes obvious that they differ largely regarding their APIs,
but they are starting to implement a lot of the same acces-
sibility features.

Custom Controls and Elements

If you are using custom UI elements in your app, then, those
platforms that have an Accessibility API enable you to make
your custom controls accessible. You do this by exposing the
control to assistive technology running on the device so that
it can interrogate the properties of the control and render it
accessibly.

You can get more information about Accessibility on An-
droid from various resources on YouTube including the Google
I/O presentations from 20179, 201610, 201511 and 201312.

The Apple developer program has helpful resources too.
Take a look at their accessibility video presentations from the
WWDC conferences available in the iOS Developer Center13 by
searching for 'accessibility'.

9 youtube.com/watch?v=h5rRNXzy1xo

10 youtube.com/watch?v=2qjgxH384Nc

11 youtube.com/watch?v=euEsfNR5Zw4

12 youtube.com/watch?v=ld7kZRpMGb8

13 developer.apple.com/wwdc/videos

Accessibility221

https://www.youtube.com/watch?v=h5rRNXzy1xo
https://www.youtube.com/watch?v=2qjgxH384Nc
http://www.youtube.com/watch?v=euEsfNR5Zw4
http://www.youtube.com/watch?v=ld7kZRpMGb8
http://developer.apple.com/wwdc/videos/

Android App Accessibility

Accessibility was first a realistic proposition with Android 4.1
(Jellybean) and it is much improved since then. In Android
7 (“Nougat”), there has been more prominent featuring of
accessibility settings to let users independently configure their
device. 'Display size' was added as an option and it gives the
user an alternative view of the standard screen, making the
icons and text larger as a native setting without any mag-
nification or font adjustment. This is also available as a live
preview. Individual OEMs have created Android skins that offer
the feature of a dark theme (bright text on a dark background)
as it was removed in Android Nougat, but expected to return
in future versions. 'BrailleBack' works with Talkback for a com-
bined speech and braille experience enabling the user to add
a braille display via bluetooth. It is now possible to change
colors or contrast using 'high contrast text' or 'color inversion'
options. This is equivalent to what Apple have undertaken with
color filters in display accommodations. There is also the addi-
tion of a 'Click after cursor stops moving' option, which helps
people with dexterity issues or with low vision. Also popular is
the addition of a large mouse cursor.

Android 8 further enhanced accessibility by adding the
possibility to control accessibility volume independently from
media volume. It also introduced an accessibility shortcut for
easily turning the accessibility service on and off from any
screen.

Accessibility222

Accessibility features in Android include (but are not
limited to) things such as:

 — Talkback - Speech output for blind users.
 — Select to speak - Selective speech output for those who

sometimes need some assistance.
 — Font Size - For partially sighted users and some users with

learning difficulties.
 — Magnification gesture - Zoom style magnification for

partially sighted users.
 — Display Size - For partially sighted users and some users

with learning difficulties.
 — Click after cursor stops moving - For those with dexterity

issues or who are partially sighted.
 — High Contrast Text - For partially sighted users and some

users with learning difficulties. This is an experimental
setting.

 — Color inversion - For partially sighted users and some
users with learning disabilities who prefer an inverted
color palette. This is still an experimental setting

 — Color correction - This can change the balance of how the
color is presented on the screen and aids those with color
blindness. This is an experimental setting.

 — Color adjustment - For users who have particular color
preferences.

 — Captions - Providing captions or subtitles for those with
hearing loss.

 — Mono audio - For those with hearing loss using head-
phones.

 — Switch access - For those with physical disabilities who
prefer to access apps using a hardware device.

 — Touch and hold delay - For users with motor control
issues.

Accessibility223

There are some helpful resources in the Support Library14
which also includes ways to improve the accessibility of
custom views.

For specifics on how to use the Android accessibility API
along with details of best practice in Android accessibility,
please see Google’s document entitled Making Applications
Accessible15.

You will also find more examples in the training area of the
developer documentation in a section entitled Implement-
ing Accessibility16. Testing the Accessibility is also covered
online17.

iOS App Accessibility

Apple were the first company to embed accessibility features
directly into the OS. Because of this the support for accessibil-
ity in iOS is a little better than in Android, although Android is
fast catching up. There are certainly comparable features now
but it is a legacy issue as Apple was the first to move into this
area. A lot of blind and partially sighted users also find the
gestures in iOS easier to use.

On iOS, several accessibility features are available in the
display settings. This demonstrates that people have recog-
nized that some of these settings are relevant for everyone.
Accessibility is going mainstream as people just want to make
the display more personal to them and have a device that
is easy to use. This means it is even more important that

14 developer.android.com/tools/support-library/index.html

15 developer.android.com/guide/topics/ui/accessibility/apps.html

16 developer.android.com/training/accessibility/index.html

17 developer.android.com/tools/testing/testing_accessibility.html

Accessibility224

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/training/accessibility/index.html
http://developer.android.com/tools/testing/testing_accessibility.html

developers consider accessibility settings when creating apps
as the number of people using these features has increased.

There have been some hardware changes with the iPhones 7
and 7+ as the devices have a 'virtual' rather than physical home
button. However, this button does feel fairly physical to a user
as it provides haptic feedback. One other change does related
to haptic feedback generally as it is now natively deployed
across the OS. If you use a 'picker wheel', it now delivers a
discernible click when it is moving through options. This is
a mainstream usability feature but certainly enables some
disabled users to use the picker wheels more easily. Apple have
also put more granularity into the haptic feedback that they
provide, as the user can create lots of levels of sensitivity in a
way they can not do on other OS's.

Some of the accessibility features in iOS include, but are
not limited to:

 — VoiceOver - A screen reader. It reads out the objects and
text on screen, enabling your app to be used by people
who are blind.

 — Zoom - This magnifies the entire content of the screen.
 — Magnifier - This uses the camera to magnify items and can

be used for spot reading. When enabled, the home button
can be triple clicked to activate it.

 — Invert Colors - This option inverts the colors on the
display, which helps many people who need the contrast
of black and white but find a white background emits too
much light.

 — Color Filters - This helps color blind users differentiate
colors and also aids those who have difficulty reading text
on the display.

 — Reduce White Point - This reduces the intensity of bright
colors.

225 Accessibility

 — Larger Text - This can help a broad range of people from
those who use glasses, through to partially sighted people
and those with learning difficulties.

 — Bold text - This can help a broad range of people from
those who use glasses, through to partially sighted people
and those with learning difficulties.

 — Increase Contrast - There is an option to reduce transpar-
ency which takes the transparency from certain areas such
as the notification shade and control center and folders

 — Switch control - For those with physical disabilities
who wish to access the app using a third party hardware
device.

 — AssistiveTouch - For users who have difficulty touching
the screen or might need to create custom gestures.

 — Touch Accommodations - These options give the user
the ability to change the settings, on how the screen will
respond to touch gestures.

 — Hearing devices - Includes the connections for hearing
aids for people with hearing loss.

 — LED flash for alerts - To enable people to choose what
works best for them for notifications, particularly helpful
for those with hearing loss.

 — Mono Audio - Helpful for those with hearing loss.
 — Phone Noise Cancellation - To reduces the ambient noise

on phone calls when you are holding the receiver to your
ear. Helpful for all, but also used by people with hearing
loss.

 — Subtitles and Captioning - For people with hearing loss.
 — Audio Descriptions - For people with sight loss.
 — Guided Access - This is helpful in education, or just where

someone wants to limit what is accessible on the screen
to a user.

 — Accessibility shortcut - Set up to switch features on and
off using the home button.

Accessibility226

 — Siri - This enables users to make phone calls and oper-
ate various other features of their phone by using voice
commands. This can be helpful for a broad range of
people including those with motor control issues, learning
difficulties and vision loss.

If you are working on iOS, make sure check out Apple's De-
veloper area18 and to follow Apple's accessibility guidelines19.
These guidelines detail the API and provide an excellent source
of hints and tips for maximising the user experience with your
apps.

Apple also provide some helpful guidance on testing the
accessibility on your app with Voiceover20.

18 developer.apple.com/accessibility/ios/

19 developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
iPhoneAccessibility/Introduction/Introduction.html

20 developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/
TestAccessibilityonYourDevicewithVoiceOver/
TestAccessibilityonYourDevicewithVoiceOver.html

Accessibility227

https://developer.apple.com/accessibility/ios/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Introduction/Introduction.html
http://developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html
http://developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html
http://developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html

Windows App Accessibility

It is fair to say that Microsoft have been playing catch up with
iOS and Android as far as accessibility features go because they
were later to deliver built in accessibility features to phones.
Although they had made a move towards accessibility with
earlier Windows phone versions the initial delivery of Windows
10 and the Edge browser was somewhat of a backwards step
accessibility wise. However, since the first release of Windows
10, Microsoft have made a commitment to put accessibility at
the heart everything they do and universal design is central
to that. Since this statement there has been an improvement
in Windows 10, the Edge browser and Office applications,
especially Office365.

There was good support for magnification, text enlargement
and changing of colors in earlier Windows phones and in Win-
dows Phone 8.1 things moved on again with the introduction
of the screen reader Narrator which reads out text in synthetic
speech. At the time of delivery it was not as comprehensive as
the iOS and Android offerings and could only be used with core
functionality and navigation functionality.

Now there has been a unified release of Windows 10
Creators Update which offers much more in the way of acces-
sibility, particularly for those people with sight loss. This OS
is available on a limited number of Windows devices. There is
good support for magnification and colors and Narrator is a lot
more fully featured and includes better information relating
to the context of controls. There is even beta support for a
number of braille displays and different languages. It is also
possible to use a controller on Xbox 1 to handle Narrator.

Narrator can still be launched using Cortana and there are
new text-to-speech voices which offer multilingual reading,
by switching between voices dynamically. There is now a much

Accessibility228

better link between Cortana and Narrator as Cortana now
ignores the Narrator voice when the two are used together.

Some of the accessibility features on Windows 10 Creators
Update include but are not limited to:

 — Narrator - This is the screen reader for those users who are
blind or have little vision.

 — Activate keys on touch keyboard when I lift my finger
off the keyboard - This is to assist those with dexterity
issues.

 — Screen Magnifier - This feature is for partially sighted
people who wish to magnify the text on the screen and
change the zoom level. It has its own gestures.

 — High Contrast Theme - This theme changes text to black
and white and provides a solid background behind words
that would otherwise be on top of pictures. This is helpful
for partially sighted users and some users with learning
disabilities.

 — Closed Captions - It is possible to change the font size,
color, background and window transparency of captions.
This is helpful for people with hearing loss that may also
have some vision loss.

 — Text Scaling - The size of text can be enlarged to aid those
with learning difficulties or users who are partially sighted.

 — Cortana - Is the 'personal assistant' that is only available
on Windows Phone 8.1. This is a main feature for all users,
but will be helpful for those with disabilities too as it is
speech activated.

You can find out about accessibility for Windows apps

Accessibility229

with some Microsoft video resources21 and platform specific
documentation.

Microsoft has published Guidelines for Designing Accessible
Apps and a dedicated paper about Accessibility for Windows 10
/ UWP apps22.

Mobile Web App Accessibility

As mentioned earlier in the chapter, much has been written
about web accessibility, but less has been written on acces-
sibility relating to apps. This is also true of mobile website
accessibility or web app accessibility. It is an area which has
growing interest and the World Wide Web Consortium (W3C)
have created a Mobile Accessibility Task Force23 concerned with
the required work in this area.

On the main W3C Mobile Accessibility page24 you can find
lots of helpful resources related to mobile accessibility.

It is suggested by the W3C that anything that uses HTML
and is web based should still follow the Web Content Accessi-
bility Guidelines (WCAG) 2.0 while also referring to Mobile Web
Best Practices (MWBP). So if you are a web content developer,
then these guidelines are a good place to start. You will also
find Relationship between Mobile Web Best Practices (MWBP)
and Web Content Accessibility Guidelines (WCAG)25 a helpful
resource.

21 developer.microsoft.com/en-us/windows/accessible-apps

22 docs.microsoft.com/en-gb/windows/uwp/usability/index

23 www.w3.org/WAI/GL/mobile-a11y-tf/

24 http://www.w3.org/WAI/mobile/ www.w3.org/WAI/mobile/

25 w3.org/TR/mwbp-wcag/

Accessibility230

https://developer.microsoft.com/en-us/windows/accessible-apps
https://docs.microsoft.com/en-gb/windows/uwp/usability/index
https://www.w3.org/WAI/GL/mobile-a11y-tf/
http://www.w3.org/TR/mwbp-wcag/

If your app is intended to mimic a native app look and feel,
then you should follow the guidelines mentioned above in this
chapter.

As support of HTML 5 is increasingly adopted on the various
mobile platforms, consider reading Mobile Web Application
Best Practices26 as this is likely to form the foundation of any
mobile web application accessibility standard that emerges in
the future. One of the other key areas of guidance is Accessible
Rich Internet Applications 1.0 (WAI-ARIA)27, as it has been
designed to ensure that more dynamic HTML functionality is
accessible to screen readers.

An interesting area of work happening at the W3C is in the
Independent User Interface (IndieUI) Working Group28. The
group states "Independent User Interface (IndieUI) is a way
for user actions to be communicated to web applications and
will make it easier for web applications to work in a wide range
of contexts — different devices, different assistive technolo-
gies (AT), different user needs". This work is going to be very
important for accessibility and device independence. It is
worth looking at the documentation that they currently have
available.

26 w3.org/TR/mwabp

27 w3.org/TR/wai-aria

28 w3.org/TR/indie-ui-context

Accessibility231

http://w3.org/TR/mwabp
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/indie-ui-context/

Developing Accessible Games

Accessible games for disabled users were always very basic,
if there were any available at all. Now some developers are
beginning to think about engaging with a wider audience
when developing games and finding ways to prevent unneces-
sarily excluding players.

Much of the guidance and standards already shared will be
very valuable when creating games as this information is still
relevant to gaming development. Do not forget to ensure that
any accessibility features are clearly obvious to users in the
game description so when they make the choice to purchase,
they know that the app may be of interest to them.

There are a couple of sites which have some accessibility
guidelines for game developers. They include Game Accessibil-
ity Guidelines29 and Includification30.

If you would like to look at some accessible games that
have already been developed, then Game Accessibility31 is a
good resource.

29 gameaccessibilityguidelines.com/

30 www.includification.com/

31 game-accessibility.com/

Accessibility232

http://gameaccessibilityguidelines.com/
https://www.includification.com/
http://game-accessibility.com/

Testing

Introduction

In practice, testing software has often been performed as a
distinct one-time activity, after the code has been written and
before the code has been released. Over the last decade testing
industry leaders have seen the advantages of starting testing
earlier in the project lifecycle, for instance involving testing
in the design phase. This is sometimes known as 'shift-left'
testing. And more recently testing is being extended to
incorporate information and feedback gleaned post-deployment
when the software is live. This is becoming known as 'shift-
right' testing. These concepts are a great fit for mobile apps
where users provide feedback in reviews and where mobile
analytics and crash analytics provide additional information
about usage of the app.

So testing is becoming more of a mindset and a continual
practice than a one-shot activity. Teams who use 'Agile'
development are sometimes prone to limit testing of a feature
to within a sprint which may constrain and box-in the testing.
New testing approaches may need to emerge that take a more
holistic approach, not limited to testing within a sprint. More
needs testing than the new stories and features, and testing
should not be limited to testing the code we write - testing of
libraries, tools, services, approaches, etc. can all help improve
the quality of our work and enable teams to make better, more
informed decisions rather than relying on advertising, gut-feel,
or cost.

B
Y

 J

ul
ia

n
H

ar
ty

 &
 M

ar
c

va
n’

t
Ve

er

Testing234

"But test them all; hold on to what is good"1

Testing also needs to extend beyond the mobile app - our
users expect no less! Apps often rely on third-party and cloud-
based architectures and testing needs to factor these in. Users
expect to be able to work seamlessly across multiple devices,
for instance by creating an email with a photo attachment on
their smartphone and then editing the email on their laptop
using a web browser before sending it from yet another device
and flavor of software. Therefore we need to consider how
users may use our apps and whether the app extends beyond
the mobile device. In parallel, mobile apps may be part of a
larger ecosystem where smartwatches, fitness monitors, etc.
are integrated and provide data to the app. Our testing needs
to reflect the likely usage patterns by end users.

Finally for now, our apps need to cope well in an ever
changing and often expanding microcosm. New releases of the
platform, new devices, and new usage patterns can all expose
weaknesses and limitations in an app. Unless we actively and
continually pay attention our app will be left to fend for itself
and may let down or disappoint our users.

Testing might be seen as an impediment but failures in your
app can be all too public. And recovering your credibility is
hard when your app has a poor score in the app store. Rather
than waiting for users to decide the fate, testing your mobile
apps can adjust the balance in your favor. By reading this
chapter you have the opportunity to help equip you and your
testing team so they can test your app more effectively.

This chapter covers the general topics; testing for specific
platforms is covered in the relevant chapter.

1 1 Thessalonians 5:21

Testing235

Beware of Differences

Platforms, networks, device settings, device models, and even
firmware, are all specific and differ from each other. Any could
cause problems for your applications2. This means we need a
variety of devices to test on.

The range and variety of devices continues to accelerate,
and users are increasingly connecting mobile devices together,
for example IoT devices, wearables, cars or home appliances.
More and more devices are needed for a testlab to create suf-
ficiently representative test environments. Obtaining additional
devices is important. From a user's perspective a mobile app
is the combination of software, hardware and environment.
They want and expect an app to work regardless of all these
details. Furthermore, the boundaries of what needs to work
extends even further, as many apps now interact with external
devices and sensors. As an example, Disney have designed
seamless experiences using smart wristbands3 which integrate
into a larger ecosystem. Devices can also be used to pay for
travel4 and shopping, cameras are used by banking software
to identify and authorize cash withdrawals, and so on. Any
problems, incompatibilities, and so on can adversely affect the
UX and may have significant impact for instance if users are
denied access to transport, money, and more.

A basic strategy for testing mobile apps is to assume that
every combination is unique and different from another and
will behave slightly differently. It would be impractical to test
each combination, a more fruitful approach is to invest time

2 An example of device specific problems with Android on Samsung is
anasambri.com/android/special-place-for-samsung-in-android-hell.html

3 wired.com/2015/03/disney-magicband

4 vodafone.nl/shop/mobiel/abonnement/extra-opties/smartlife/wallet/reizen

Testing236

http://anasambri.com/android/special-place-for-samsung-in-android-hell.html
https://www.wired.com/2015/03/disney-magicband/
https://www.vodafone.nl/shop/mobiel/abonnement/extra-opties/smartlife/wallet/reizen/

in learning what the impact of the differences are and testing
a subset of the combinations that maximizes the insights and
confidence we have in the behavior of the app across most of
the combinations. Key skills include:

 — Device analysis: What are the main differences? And when
are these differences relevant to the app? (And which ones
can we ignore).

 — Extrapolation: What does a test on one device say to the
thousand of devices out there in the wild?

Discovering Differences
There are several ways to identify the effects of specifics, for
instance, a tester may notice differences in the performance of
the app and the behavior of the UI when testing on different
devices. Automation may also detect differences and can help
you selecting devices that support the required features5.

Conversely, Mobile Analytics can help identify differences in
various aspects including performance and power consumption
when the app is being used by many users on the vast variety
of their devices. Some compelling examples of differences
in behavior and on ways issues were addressed in a paper
published by computer scientists from the University of
Wisconsin6. A book is also available from HP Enterprise on the

5 mobiletestingblog.com/2017/05/30/optimizing-android-test-automation-
development

6 "Capturing Mobile Experience in the Wild: A Tale of Two Apps", available as a
download at static.googleusercontent.com/media/research.google.com/en//
pubs/archive/41590.pdf

Testing237

http://mobiletestingblog.com/2017/05/30/optimizing-android-test-automation-development/
http://mobiletestingblog.com/2017/05/30/optimizing-android-test-automation-development/
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf

confluence between mobile analytics and testing for mobile
apps7.

Testing Needs Time - You Need a
Strategy

The strategy defines how much test time is spent to the
different parts of the mobile app and during the different
development phases. There are tradeoffs on how best to spend
whatever time you have. For instance, testing features in
more detail versus testing on a wider variety of devices versus
testing various quality aspects including performance, usability
and security.

The conditions a mobile app need to operate are vast and
to factor in these conditions into the testing is challenging.
There may be more productive ways to obtain some informa-
tion, for instance by using feedback from end-users and from
mobile analytics. However, the risks of deferring data gathering
(versus testing internally) need to be actively considered. An
effective test strategy aims to balance both approaches. With
the risk analysis, the quality perspectives and the available
time the test plan can be created.

Continuous Testing
Continuous delivery needs continuous testing. Viable apps
need to be updated on an ongoing basis. Updates may
include fixes for new platform versions or device models, new
functionality and other improvements. Therefore, testing is
not a one-off task; high quality apps befit ongoing, optimized
testing, including testing in production. Production testing

7 themobileanalyticsplaybook.com (co-written by Julian Harty, one of the
authors of this chapter)

Testing238

http://themobileanalyticsplaybook.com

includes testing engagement and validation as well as early
detection of potential problems before they mushroom.

Manage your Testing Time
Testing as you have discovered can take many hours, far more
than you may want to do, particularly if you are close to a
deadline such as a release date. There are various ways you can
manage time spent in testing, in parallel testing can be made
more interesting, rewarding, and more productive.

 — Reduce setup time: Find ways to deploy apps quickly
and efficiently. Implement mechanisms to provide the ap-
propriate test data and configuration on both the mobile
device and the relevant servers. Aim to have devices and
systems 'ready to test'.

 — Reduce time needed for reporting & bug analysis: Data,
screenshots, and even video, can help make bugs easier
and faster to investigate. Data can include logs, system
configurations, network traffic, and runtime information.
Commercial tools can record actions and screenshots to
reduce the time and effort needed to report and reproduce
problems.

 — Risk analysis: You can use the risk analysis to decide
how and when to allocate testing effort. Risks are hard to
determine accurately by the tester or developer alone; a
joint effort from all the stakeholders of the mobile app can
help to improve the risk analysis. Sometimes, the mobile
app tester is the facilitator in getting the product risk
analysis in place.

 — Scaling testing: Increasing the throughput of testing by
scaling it, for instance using test automation, cloud-based
test systems, and more humans involved in the testing
can help increase the volume, and potentially the quality,

Testing239

of the testing. Using static analysis tools to review code
and other artifacts can also help the team to find and fix
problems before the app is released.

Involve End-Users in your Testing

Development teams need a mirror to develop a useful mobile
app. Early user feedback can provide that mirror. You do not
need many end-users to have good feedback8. Bigger value is
gained with early involvement, multiple users, regular sessions,
and multiple smaller tests. Testers can guide and facilitate the
end-user testing, for instance, by preparing the tests, process-
ing log files and analyzing results. They can also retest fixes to
the app.

Whenever others are involved in testing an app, they need
ways to access and use the app. Web apps can be hosted
online, perhaps protected using: passwords, hard-to-guess
URLs, and other techniques. Installable apps need at least one
way to be installed, for instance using a corporate app store or
specialist deployment services.

When the app is closer to being production-ready, users
can test the more mature version of the mobile app in Alpha
& Beta tests phases. A development team or organization can
offer an online community to give end-users early access to
new releases, give loyalty points, ratings. This community
should be a friendly ecosystem to receive feedback before the
mobile app is released into the app store.

8 nngroup.com/articles/why-you-only-need-to-test-with-5-users

Testing240

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Proxy users
There are various services available that facilitate testing
by other people. These people might be users of your app,
however they are more likely to be proxy users, people who
take the role of end users and provide additional perspective
and perhaps insights into the behavior of an app. Possible
sources of these testers include crowdsourcing9. Lookback10
provides a different more personal flavor.

Effective Testing Practices

Testing, like other competencies, can be improved by applying
various techniques and practices. Some of these need to be
applied when developing your mobile app, such as testability,
others apply when creating your tests, and others still when
you perform your testing. Testdroid offers a good checklist11 on
getting the right testing expertise into your team.

Implementing Testability
Start designing and implementing ways to test your app while
it is being developed. This applies especially for automated
testing. For example, using techniques such as Dependency
Injection in your code enables you to replace real servers
(slow and flaky) with mock servers (controllable and fast).
Use unique, clear identifiers for key UI elements. If you
keep identifiers unchanged your automated tests require less
maintenance.

9 Crowdtesting service providers include Applause.com, PassBrains.com, and
TestBirds.de

10 lookback.io/

11 testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-
team

Testing241

http://www.applause.com
http://www.passbrains.com
http://www.testbirds.de
https://lookback.io/
http://testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team
http://testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team

Separate your code into testable modules. Several years
ago, when mobile devices and software tools were very limited,
developers chose to ‘optimize’ their mobile code into mono-
lithic blobs of code, however the current devices and mobile
platforms mean this form of ‘optimization’ is unnecessary and
possibly counter-productive12.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the
problems are when the application does not work as hoped.

Designing Test Environments
Test environments describe where we will perform the testing.
It includes many facets. ISTQB defines test environment as:
"An environment containing hardware, instrumentation,
simulators, software tools, and other support elements needed
to conduct a test."13.

A key skill is to understand and be able to create suitable
test environments. Often these include additional software
tools and utilities, for instance to be able to read and filter
log files, to control the network behavior, and/or to represent
systems the app depends on including third-party authentica-
tion, payment processing, and so on. Like craftspeople of old,
we are responsible for choosing the tools we use. Sometimes
we may choose to create our own tools, for instance to mock
the behaviors of an application server, to be able to inject
errors, and so on.

12 To learn more about the reasons, read Google's blog: googletesting.blogspot.
co.uk/2015/03/android-ui-automated-testing.html

13 istqb.org/downloads/send/20-istqb-glossary/186-glossary-all-terms.html

Testing242

http://googletesting.blogspot.co.uk/2015/03/android-ui-automated-testing.html
http://googletesting.blogspot.co.uk/2015/03/android-ui-automated-testing.html
http://www.istqb.org/downloads/send/20-istqb-glossary/186-glossary-all-terms.html

Mnemonics and Tours
Mnemonics and Tours help us focus on what and how while we
are testing a mobile app. Both concepts are heuristics, often
useful, but also fallible.

A couple of mnemonics to help test mobile apps are:

 — I SLICED UP FUN14: Input (Test the application chang-
ing its orientation (horizontal/vertical) and trying out
all the inputs including keyboard, gestures etc.), Store
(Use appstore guidelines as a source for testing ideas),
Location (Test on the move and check for localization
issues), Interaction/Interruption (See how your app
interacts with other programs, particularly built-in, native
apps), Communication (Observe your app's behavior
when receiving calls, e-mails, etc.), Ergonomics (Search
for problem areas in interaction, e.g. small fonts), Data
(Test handling of special characters, different languages,
external media feeds, large files of different formats,
notifications), Usability (Look for any user actions that
are awkward, confusing, or slow), Platform (Test on
different OS versions), Function (Verify that all features
are implemented and that they work the way they are
supposed to), User Scenarios (Create testing scenarios for
concrete types of users), Network (Test under different and
changing network conditions)

 — COP FLUNG GUN15 summarizes similar aspects under
Communication, Orientation, Platform, Function, Location,
User Scenarios, Network, Gestures, Guidelines, Updates,
Notifications.

14 kohl.ca/articles/ISLICEDUPFUN.pdf

15 moolya.com/blogs/2014/05/34/COP-FLUNG-GUN-MODEL

Testing243

http://www.kohl.ca/articles/ISLICEDUPFUN.pdf
http://www.moolya.com/blogs/2014/05/34/COP-FLUNG-GUN-MODEL

Karen Johnson provides helpful material on using heuristics
and mnemonics for testing software at karennicolejohnson.
com/wp-content/uploads/2012/11/KNJohnson-2012-heuristics-
mnemonics.pdf.

Tours help you focus your testing, Cem Kaner describes a
tour as "a directed search through the program. Find all the
capabilities. Find all the claims about the product. Find all the
variables. Find all the intended benefits. Find all the ways to
get from A to B. Find all the X. Or maybe not ALL, but find a
bunch."16. With the combination of different tours in different
perspectives (see the I SLICED UP FUN heuristics) coverage and
test depth can be chosen.

Examples of Tours17 include:

 — Configuration tour: Attempt to find all the ways you can
change settings in the product in a way that the applica-
tion retains those settings.

 — Feature tour: Move through the application and get famil-
iar with all the controls and features you come across.

 — Structure tour: Find everything you can about what
comprises the physical product (code, interfaces, hardware,
files, etc.).

 — Variability tour: Look for things you can change in the
application - and then you try to change them.

16 kaner.com/?p=96; also see developsense.com/blog/2009/04/of-testing-
tours-and-dashboards/

17 from michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

Testing244

http://karennicolejohnson.com/wp-content/uploads/2012/11/KNJohnson-2012-heuristics-mnemonics.pdf
http://karennicolejohnson.com/wp-content/uploads/2012/11/KNJohnson-2012-heuristics-mnemonics.pdf
http://karennicolejohnson.com/wp-content/uploads/2012/11/KNJohnson-2012-heuristics-mnemonics.pdf
http://kaner.com/?p=96
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards/
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards/
http://michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

Personas
Personas can be used to reflect various users of software who
will be expected to use the mobile app. They may be designed
to reflect, or model, a specific individual or a set of key criteria
for a group of users. Regardless of how they are created each
persona is singular, not a group of people. Personas can be
used to have a clear picture of various end-users to include
so that representative tests are executed for those end-user.
Various research material are available at personas.dk.

Testing on Various Devices

Some bugs are universal and can be discovered on any mobile
device. Others, and there are plenty of them, are only happen-
ing on a subset of devices or in a certain environment (see
paragraph above: Beware Of Differences). Rather than trying
the never-ending task of a full testlab another solution is
possible: start testing in production, for instance by involving
end-users who use their own devices and combinations.

Physical and Virtual Devices
Physical devices are real, you can hold them in your hands.
Virtual devices run as software, inside another computer. Both
are useful hosts for testing mobile apps.

Virtual devices are generally free and immediately avail-
able to install and use. Some platforms, including Android,
allow you to create custom devices, for instance with a new
screen resolution, which you can use for testing your apps
even before suitable hardware is available. They can provide
rough-and-ready testing of your applications. Key differences
include: performance, security, and how we interact with them
compared to physical devices. These differences may affect

Testing245

http://personas.dk/

the validity of some test results. Beside the Android platform
virtual devices you can use GenyMotion.com, a faster and
more capable Android emulator, for instance, to control sensor
values.

The set of test devices to use needs to be reviewed on an
ongoing basis as the app and the ecosystem evolve. Also, you
may identify new devices, that your app currently does not
support, during your reviews. The following figure illustrates
these concepts.

Ultimately your software needs to run on real, physical,
phones, as used by your intended users. The performance
characteristics of various phone models vary tremendously
from virtual devices on your computer. So: buy, rent, beg,
borrow phones to test on. A good start is to pick a mix of
popular, new, and models that include specific characteristics
or features such as: touch screen, physical keyboard, screen
resolution, networking chipset, et cetera. Try your software
on at least one low-end or old device as you want users with
these devices to be happy too.

Installed
Device

 Database

Upcoming user group
The biggest grower compared

to the previous period
New user group
The most interesting

device or platform

Existing user group
The optimal mix to support

Externals
The biggest group that outside the

target and not using the app.

Target
Device

Database

Possible
Device

Database

Testing246

https://www.genymotion.com/

Here are several aspects to test explicitly on physical
devices as the devices have a significant impact on these
aspects:

 — Navigating the UI: for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you are out and about. It is a mobile
device – most users will be on the move. Rotate the screen
and make sure the app is equally attractive and functional.

 — Location: if you use location information within your
app: move – both quickly and slowly. Go to locations with
patchy network and GPS coverage to see how your app
behaves.

 — Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

 — Internet connectivity: establishing an internet connec-
tion can take an incredible amount of time. Connection
delay and bandwidth depend on the network, its current
strength and the number of simultaneous connections.
Test the effects of intermittent connectivity and how the
app responds.

As mentioned earlier, crowdtesting can also help to cover
a wide range of real devices, but you should never trust on
external peoples' observations alone.

Testing247

Remote Devices
If you do not have physical devices at hand or if you need to
test your application on other networks, especially abroad and
for other locales, then one of the ‘remote device services’ might
help you. They can help extend the breadth and depth of your
testing at little or no cost. Device farms are becoming com-
monplace, and are clearly strategic where Google and Amazon
in particular now provide them.

You can also use commercial services of companies such
as SauceLabs.com, Testdroid.com, PerfectoMobile.com or Sigos.
com for similar testing across a range of devices and platforms.
Some manufacturers brand and promote these services however
you often have to pay for them after a short trial period. Some
of the commercial services provide APIs to enable you to create
automated tests.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations.

Beware of privacy and confidentiality when using shared
devices.

248

http://saucelabs.com/
http://testdroid.com/
http://www.perfectomobile.com
https://appexperience.sigos.com
https://appexperience.sigos.com

Test Automation

Automated tests can help you maintain and improve your
velocity, your speed of delivering features, by providing early
feedback of problems. To do so, they need to be well-designed
and implemented. Good automated tests mimic good software
development practices, for instance using Design Patterns18,
modularity, performing code reviews, et cetera. To automate
scripting and coding skills are needed. The level of skills is
dependent on the chosen tool. Test automation tools provided
as part of the development SDK are worth considering. They are
generally free, inherently available for the particular platform,
and are supported by massive companies. Test automation can
be performed at different levels, see the automation pyramid
figure below. It is a strategic choice what should be automated
in the unit tests, what on the service or API level and what
scenarios on the UI level of the application. The pyramid
represents trust that is built up from the unit test to the
higher levels. Multiple test levels are needed to prove that the
app works.

18 en.wikipedia.org/wiki/Design_Patterns

UI

SERVICE

UNIT

249 Testing

http://en.wikipedia.org/wiki/Design_Patterns

GUI Level Test Automation
The first level of automation are the tests that interact with
the app via the Graphical User Interface (GUI). It is one of the
elixirs of the testing industry, many have tried but few have
succeeded. One of the main reasons why GUI test automa-
tion is so challenging is that the User Interface is subject to
significant changes which may break the way automated tests
interact with the app.

For the tests to be effective in the longer term, and as
the app changes, developers need to design, implement and
support the labels and other hooks used by the automated GUI
tests. Both Apple, with their XCTest framework19, and Android20
underpin their test automation frameworks with Accessibility
features incorporated into their platforms.

Some commercial companies have open sourced their tools,
e.g. SauceLabs' appium21 and Xamarin's Calabash22. These
tools aim to provide cross-platform support, particularly for
Android and iOS. Other successful open source frameworks
include Robotium23 which now offers a commercial product - a
test recorder. Several other tools have effectively disappeared,
perhaps the industry is now maturing where only the stronger
offerings survive?

19 developer.apple.com/library/content/documentation/DeveloperTools/
Conceptual/testing_with_xcode/chapters/09-ui_testing.html

20 developer.android.com/training/testing/ui-testing/uiautomator-testing.html

21 https://github.com/appium/appium

22 github.com/calabash

23 github.com/robotiumtech/robotium

Testing250

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://github.com/appium/appium
https://github.com/calabash
https://github.com/robotiumtech/robotium

Service Level Test Automation
There is a lot of business logic implemented inside an API.
Changes in this logic or in the backend system can be
monitored with automated API tests. The focus of the test can
be functional-regression but also reliability, performance and
security. For functional regression testing a tool like Postman24
is useful.

Several tools can help with API testing. They include Fiddler
by Telerik25 and Charles Proxy26. Both enable you to view and
modify network traffic between your mobile device and the
network.

Unit Level Test Automation
Unit testing involves writing automated tests that test small
chunks of code, typically only a few lines of source code.
Generally, they should be written by the same developer who
writes the source code for the app as they reflect how those
individual chunks are expected to behave. Unit tests have a
long pedigree in software development, where JUnit27 has
spawned similar frameworks for virtually all of the program-
ming languages used to develop mobile apps.

24 getpostman.com

25 telerik.com/fiddler

26 charlesproxy.com

27 en.wikipedia.org/wiki/JUnit

Testing251

https://www.getpostman.com
http://www.telerik.com/fiddler
https://www.charlesproxy.com/
http://en.wikipedia.org/wiki/JUnit

BDD Test Automation
BDD is a Behavior-Driven Development28 approach within the
Test Driven Development family. The behavior is described in
formatted text files that can be run as automated tests. The
format of the tests are intended to be readable and under-
standable by anyone involved with the software project. They
can be written in virtually any human language, for instance
Japanese29, and they use a consistent, simple structure with
statements such as Given, When, Then to structure the test
scripts.

The primary BDD framework to test mobile apps is Calabash
for Android and iOS30. Various others have not been developed
or maintained in the last year and can be considered defunct
for all but the most persistent developers. General purpose
BDD frameworks may still be relevant when they are integrated
with frameworks, such as Appium, that use the WebDriver wire
protocol (a W3 standard)31.

Automation can also help the manual testing, for instance,
to replace manual, error-prone steps when testing, or to reduce
the time and effort needed, for instance, to automate a col-
lection of screenshots. Developers can help testers to be more
efficient by providing automated tools, e.g. app deployment
via ADB32.

28 en.wikipedia.org/wiki/Behavior-driven_development

29 github.com/cucumber/cucumber/tree/master/examples/i18n/ja

30 github.com/calabash

31 w3.org/TR/webdriver

32 thefriendlytester.co.uk/2015/11/deploying-to-multiple-android-devices.html

Testing252

http://en.wikipedia.org/wiki/Behavior-driven_development
http://github.com/cucumber/cucumber/tree/master/examples/i18n/ja
http://github.com/calabash
http://www.w3.org/TR/webdriver/
http://www.thefriendlytester.co.uk/2015/11/deploying-to-multiple-android-devices.html

Testing Through The Five Phases of an
App's Lifecycle

The complete lifecycle of developing a mobile app fits into
5 phases: implementation, verification, launch, engagement
and validation. Depending on which phase(s) you are involved
in, there are different tasks for a mobile app tester to be
performed. For example, when joining a development team,
the task can be the analysis of the error in the log files on
a device. When joining a beta test phase, a task can be the
analysis of usability tests results like recording movies.

Testing applies to each phase. Some of the decisions made
for earlier stages can affect your testing in later stages. For
instance, if you decide you want automated system tests in
the first phase they will be easier to implement in subsequent
phases. The five phases might suggest that they follow one
after the other; this is not the case. Every step in the different
phases provides the possibility to learn and improve. When
testing the team learns both how good the mobile app product
is and also about areas for improvement in how the app is
produced. Mobile app development is a challenging complex,
dynamic activity that does not go perfectly the first time,
therefore, teams should incorporate an improvement cycle so
they can learn and actively improve what they do, see Mobile
improvement model33.

Phase 1: Implementation
This includes design, code, unit tests, and build tasks. Tradi-
tionally testers are not involved in these tasks; however good
testing here can materially improve the quality and success of

33 https://improvement.polteq.com/en/ti4mobile/

253 Testing

the app by helping us to make sure the implementation is done
well.

In terms of testing, you should decide the following
questions:

 — Do you use test-driven development (TDD)?
 — Help review designs on what are the main, alternative and

negative user flows
 — Which test data do you use to validate the user flows?
 — Will you have automated system tests? If so, how will you

facilitate these automated system tests? For instance by
adding suitable labels to key objects in the UI.

 — How will you validate your apps? For instance, through the
use of Mobile Analytics? Crash reporting? Feedback from
users?

Question the design. You want to make sure it fulfills the
intended purposes; you also want to avoid making serious
mistakes. Phillip Armour's paper on five orders of ignorance34
is a great resource to help structure your approach. And again:
do read the first chapters in this guide to learn more about
this important phase in app development.

Phase 2: Verification
Review your unit, internal installation, and system tests and
assess their potency: Are they really useful and trustworthy?
Note: they should also be reviewed as part of the implementa-
tion phase, however, this is a good time to address material
shortcomings before the development is considered 'complete'
for the current code base.

34 www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

Testing254

http://www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

For apps that need installing, you need ways to deploy
them to specific devices for pre-release testing. Based on
your test strategy you can decide on which phones, platforms,
versions, resolutions are in scope of testing and support.

System tests are often performed interactively, by testers.
You also want to consider how to make sure the app meets:

 — Usability, user experience and aesthetics requirements
 — Performance, particularly as perceived by end users35

 — Internationalization and localization testing

Phase 3: Launch
For those of you who have yet to work with major app stores
be prepared for a challenging experience where most aspects
are outside your control, including the timescales for approval
of your app. Also, on some app stores, you are unable to revert
a new release. So if your current release has major flaws you
have to create a new release that fixes the flaws, then wait
until it has been approved by the app store, before your users
can receive a working version of your app.

Given these constraints, it is worth extending your testing
to include pre-publication checks and beta tests of the app
such as whether it is suitable for the set of targeted devices
and end-users. The providers of the main platforms publish
guidelines to help you test your app will meet their submission
criteria. These guidelines may help you even if you target
other app stores and can be used as a checklist during the
implementation phase.

35 A relevant performance testing tool is ARO (Application Resource Optimizer)
by AT&T: developer.att.com/application-resource-optimizer, open source
project at github.com/attdevsupport/ARO

Testing255

http://developer.att.com/application-resource-optimizer
https://github.com/attdevsupport/ARO

App Store Guidelines

Apple developer.apple.com/app-store/review/
guidelines/

Android developer.android.com/develop/quality-
guidelines/

Phase 4: Engagement
This includes search, trust, download and installation. Once
your app is publicly available users need to find, trust,
download and install it. You can test each aspect of this
phase in before and in production. Try searching for your app
on the relevant app store, and in mainstream search engines.
On how many different ways can it be found by your target
users? What about users outside the target groups - do you
want them to find it? How will users trust your app sufficiently
to download and try it? Does your app really need so many
permissions? How large is the download, and how practical is it
to download over the mobile network? Will it fit on the user's
phone, particularly if there is little free storage available on
their device? And does the app install correctly? - there may
be signing issues which cause the app to be rejected by some
phones.

Phase 5: Validation
This includes payment, usage and user feedback. As you may
already know, a mobile app with poor feedback is unlikely to
succeed. Furthermore, many apps have a very short active life
on a user's phone. If the app does not please and engage them
within a few minutes it is likely to be discarded or ignored.
And for those of you who are seeking payment, it is worth
testing the various forms of payment, especially for in-app
payments.

Testing256

https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/

Consider finding ways to test the following as soon as
practical:

 — Problem detection and reporting. These may include your
own code, third-party utilities, and online services.

 — Mobile Analytics. Does the data being collected make
sense? What anomalies are there in the reported data? et
cetera?

 — Feedback. For all the flaws and limitations we can glean a
lot from feedback users provide including their sentiments,
feature requests, bugs, and clues we can use to improve
our testing.

You can read more about Mobile Analytics and Feedback in
this book.

Learn More

Testing mobile apps is becoming mainstream with various good
sources of information. Useful online sources include:

 — katrinatester.blogspot.de/2015/08/mobile-testing-pathway.
html - A comprehensive and well presented set of possible
steps for testing mobile software.

 — github.com/julianharty/testing-heuristics - An online open
source project to learn more about testing heuristics for
mobile apps.

 — enjoytesting.files.wordpress.com/2013/10/mobile_test-
ing_ready_reckoner.pdf - Contains short, clear testing ideas
with examples, mainly for Android devices

 — developers.google.com/google-test-automation-conference/
- The annual Google Test Automation Conference (GTAC)
often includes several presentations on testing mobile

Testing257

https://github.com/julianharty/testing-heuristics
https://enjoytesting.files.wordpress.com/2013/10/mobile_testing_ready_reckoner.pdf
https://enjoytesting.files.wordpress.com/2013/10/mobile_testing_ready_reckoner.pdf
https://developers.google.com/google-test-automation-conference/

apps. These are recorded and available free of charge,
worth watching.

 — testdroid.com/blog- A fertile blog on various topics includ-
ing testing mobile apps. They also have a series on testing
mobile games36.

 — genymotion.com/blog/android-testing-showdown/ - A useful
guide on selecting the best devices to test on.

 — appqualityalliance.org/resources - The official App Quality
Alliance AQuA website including their useful app testing
guidelines.

A good place to start learn testing mobile apps is reading
books like:

 — sensible.com/ - Steve Krug has written several immensely
popular books that cover low-cost d-i-y usability testing.
Various chapters are available online, his work is well
worth reading and much applies to testing mobile apps.

 — leanpub.com/testmobileapps - Tap Into Mobile Application
Testing, by Jonathan Kohl provides help and advice on
ways to test mobile apps.

 — handsonmobileapptesting.com/ - Hands-on Mobile App
Testing, by Daniel Knott. A well-written book on various
aspects of testing mobile apps. A sample chapter is avail-
able from the web site.

And of course do not miss the platform-specific articles in
this guide, especially the mobile web chapter to gain deeper
insights into mobile testing.

36 testdroid.com/testdroid/7790/best-practices-in-mobile-game-testing

Testing258

http://testdroid.com/blog
https://www.genymotion.com/blog/android-testing-showdown/
http://appqualityalliance.org/resources
https://www.sensible.com/
https://leanpub.com/testmobileapps
http://handsonmobileapptesting.com/
http://testdroid.com/testdroid/7790/best-practices-in-mobile-game-testing

Mobile Analytics

Introduction

Over 80 years ago pilots learned instruments could help them
fly better and their skills in using instruments could save them
particularly if they needed to fly 'blind'1. Of course, the quality
of the instruments was vital too. Today, many app developers
incorporate software that can help them know how their
apps behave when they are being used. Similarly, a range of
instrumentation exists to help us learn and understand more
about how the app is being used and how it is performing
for our users. This chapter introduces mobile analytics, crash
analytics, and heatmaps. These can be combined with each
other and complement other sources of information, including
app store ratings, crowd testing, and usability studies.

Data from mobile analytics can help many aspects of our
work, including the business, social, operational, and techno-
logical aspects. The data captured can be used to target your
work and reduce inefficiencies. You would be in good company,
according to SafeDK analytics is the most popular library in
mobile apps and at least 82% of the Android apps they scanned
incorporate analytics2.

There is an incredible richness in the mobile galaxy where
your software can be used on a wide range of devices that
exhibit significant differences in performances and behaviors.

1 csobeech.com/files/Blind-Or-Instrument.pdf

2 May 2017 Mobile SDKs Data Trends In the Android Market: mobile-sdk-data-
trends.safedk.com/full-report-May-2017 (free registration is required to
download the report)

B
Y

 J

ul
ia

n
H

ar
ty

Mobile Analytics260

http://www.csobeech.com/files/Blind-Or-Instrument.pdf
http://mobile-sdk-data-trends.safedk.com/full-report-May-2017
http://mobile-sdk-data-trends.safedk.com/full-report-May-2017

Researchers discovered battery drain varied by 3x when their
app was used on devices with similar hardware specifications
and, amongst other things, they discovered an app used cus-
tom code to reduce the screen's brightness when running on
Kindle Fire's to improve battery life by 40% and significantly
increased the session durations as a result.

Analytics can also teach us ways to improve the ways we
develop and test the software.

In all the excitement we need to remember to protect
user's privacy and respect their preferences and expectations.
The effects of mobile analytics can upset users by consuming
valuable resources or abusing sensitive information about the
user and their use of the app.

Deciding What To Measure

What would you like to measure to understand how the app is
being used? Some suggestions are:

 — User Interfaces: How people interact with the app, and
particularly the GUI.

 — Key usage events: What the users do; for instance, when
they use various internal functions or when users launch
social networking from your app.

 — Business-centric events: Any interaction by the user
that generates revenue for you. How often do your users
purchase the premium version of the app or other items
offered within your software? When do they cancel orders
or discard their shopping cart before checking out?

 — Application-centric events: Performance, usability,
reliability, and other data about the behavior of the app.

Once you have defined your main areas of interest, you will

Mobile Analytics261

need to design the analytics measures, for instance, what data
elements need to be reported. Invest time in deciding and
designing what data is key to capture, when and how. Various
guides are available, including Facebook's App Events Best
Practices Guide3. Also, the Mobile Games chapter in this guide
includes a useful example of deciding what data to collect.

Create meaningful names for your interaction events so you
can easily and correctly remember what they measure. For each
event you want to record, decide what elements it needs to
include. Consider how the data will be used once it has been
gathered, for instance, sketch out typical reports and graphs
and map how the various data elements will be processed to
generate each report and graph.

3 developers.facebook.com/docs/app-events/best-practices

Mobile Analytics262

https://developers.facebook.com/docs/app-events/best-practices

Analytics for Layers of a Mobile App

Conceptually an app consists of several layers that build on
each other. The topmost layer is the UI which communicates
with the user. Virtually all apps include a graphic UI (GUI)
which is displayed on the screen of the device. There may
be other UIs, for instance, to capture movement, audio, and
video. The next layer contains the logic, what the app does.
Often there is also some sort of communications layer. And at
the lowest level, there is the physical device with the operat-
ing system, or platform, installed, which supports and provides
the runtime for the app.

There are various types of analytics available, they can
overlap to a certain extent. There are various types of analytics
available, they can overlap to a certain extent. Importantly,
users do not tend to perceive the app as layers, it is simply
the app. Their perceptions and their user experience can be
affected by any of these layers (and by other sources such as
feedback and reviews by other users).

GUI

Perception App-Store, in app, and social feedback

GUI analytics (heatmaps)

In-app mobile analytics

Instrumentation

App

Platform

Layers of an app

Mobile Analytics263

The most popular form of GUI analytics is based on
heatmaps, they are particularly well suited to capturing data
on how the GUI is being used. Heatmaps are enabled by incor-
porating software into an app to track all the user-interactions
with the app's GUI. There are tons of commercial options
available, Appsee provides a particularly polished service and
offers many free resources including e-books4 on heatmaps and
related topics.

In isolation, heatmap data can be used to track individual
user "journeys" through the GUI. In aggregate, various
analytics related to User Experience (UX) can be inferred from
the data, including problematic areas of the GUI. There does
not appear to be equivalent services to capture other forms of
input, so you may need to write your own code if you want/
need to gather data about other UIs.

In-app mobile analytics suits the application logic, it may
also record some details of the layer above - the UI - and
the layer below - the device. Crash analytics are also useful to
record and report on when and where crashes (also known as
exceptions) occur in the field, so we can find and fix flaws in
how the app behaves. Both Android and iOS record crashes.
Users need to permit these to be shared with the developers.
Alternatively, crash reporting can be incorporated into an app
and sent automatically. Some mobile analytics libraries can
be configured to also record crashes, for instance, in Google
Analytics V45.

The platform's behavior can be measured in the lab using
instrumentation and specialist software tools. Measuring the
behavior of users devices is harder partly because of security

4 appsee.com/ebooks

5 developers.google.com/analytics/devguides/collection/android/v4/
exceptions

Mobile Analytics264

https://www.appsee.com/ebooks
https://developers.google.com/analytics/devguides/collection/android/v4/exceptions
https://developers.google.com/analytics/devguides/collection/android/v4/exceptions

enforced by the platform. It is unlikely our apps will record
information about the platform directly, however some limited
aspects may be available such as free storage, running apps,
and resource utilization. What is available and how to obtain
the information is platform specific.

Choosing which Analytics to use

We have plenty of options competing for our attention. There
are four main sources:

 — Platform-default: these are bundled with the platform
and incorporated into the respective app store's develop-
ment console. For single platform apps these may be the
default choice since they are likely to be well documented
and integrated into the development and release process.

 — Commercial: these are provided by commercial companies.
They may be free-of-charge particularly for small volumes
of usage. However, the services generally need to be
paid for once volumes increase and to unlock additional
features.

 — Opensource: there are several opensource mobile analytics
offerings that include source code for both the client and
the server. Examples include Count.ly6 and Piwik7. These
allow the software to be customized and tailored. They
can also be hosted on servers you choose and provide
significant flexibility.

 — In-house: it is possible to create in-house mobile analyt-
ics software. Various companies have done so. Reasons
to develop in-house implementations include: flexibility,

6 count.ly/community-edition/

7 github.com/piwik

Mobile Analytics265

https://count.ly/community-edition/
https://github.com/piwik

performance, and security. Cost may also be a factor
compared to commercial offerings.

Our choice is likely to depend on several, sometimes com-
peting, factors. Here are some suggestions to consider: cost,
flexibility, performance, control, access to data, and cross-
platform consistency for organizations and teams who need
to support more than one platform, app or implementation.
Additional considerations include the richness and flexibility
of the API and the control that is available to the developers
and the users (in case you want to allow users to decide which
analytics data are collected and transferred).

Consider several of the potential solutions before commit-
ting to any of them. Discover what other apps use and why.
Read documentation and example code to see how easily
you can implement them into your app, and check the legal
agreements, including privacy. Then pick at least one of them
so you can experiment with implementing mobile analytics
into your app. By integrating their code, you are likely to learn
much more about what you would like to achieve by using
mobile analytics in your app, and how mobile analytics works
in practice.

Two providers are well worth studying. Segment.io8
abstracts a wide range of mobile analytics offerings. Their
opensource code9 reduces the effort needed to adapt to
different analytics providers. Count.ly10 provide open source
implementations of their server as well as of their client
libraries, and they encourage you to create a complete test
environment to evaluate their product.

For multi-platform apps, you may want consistency across

8 segment.io

9 github.com/segmentio

10 count.ly
Mobile Analytics266

http://segment.io/
http://github.com/segmentio
http://count.ly/

each platform. Otherwise, you may be trying to compare
dissimilar, or even disparate, data sets - particularly if different
mobile analytics solutions are used for the various platforms.
Consider picking a common solution that supports every
platform you want to launch your app on.

Implementation Considerations

There are a wide range of topics to consider when implement-
ing and integrating mobile analytics. Broadly they are:

 — Costs: There are various costs. These include implementa-
tion, financial, operational and privacy (as they collect
data from users of how they are using the app). These
costs need to be considered and justified and only imple-
mented where the value significantly exceeds the costs and
where the actual and potential costs can be mitigated.

 — Testing and calibration: Our work, and the services and
infrastructure we use, all need to be tested and calibrated.
Do not blindly trust or assume the system and the numbers
they present are complete and accurate, they often are
not. Read on for more information.

 — Customization: including augmenting and repurposing.
 — Integration into our microcosm: Integration can help

improve how we work as well as the value of the data and
information we obtain. What are the integration options,
for instance with communications tools such as IRC and
Slack? And are API's available so we can query and retrieve
data, reports, and analysis?

 — Time, latency, time zones, cut-offs: Time-related aspects
can reduce the completeness and the value of the data,
reports, and insights.

Mobile Analytics267

Many mobile analytics solutions will automatically record
and report data elements to the server. It is worth checking
what these elements are, how and when they are reported, and
how they are formatted. Then you can decide whether you want
to use and rely on these automatically-reported elements.

Customization
Custom event tags augment predefined events, and many mo-
bile analytics solutions provide ways for your app to generate
them. You may need to format the custom event messages. If
so, pay attention to an encoding of the elements and separa-
tors. For instance, they may need to be URL encoded11 when
they are sent as REST messages.

You may want to consider how often the app should report
events to reduce the risk of flooding the available capacity of
the analytics system, which might affect the reliability and
accuracy of the delivered analytics data. Localytics has some
good integration tips online12. One method to reduce the
volume of data processed by the analytics solutions is called
sampling. Adam Cassar published an interesting blog post on
this topic13.

11 en.wikipedia.org/wiki/Percent-encoding

12 support.localytics.com/Integration_Overview

13 periscopix.co.uk/blog/should-you-be-worried-about-sampling

Mobile Analytics268

http://en.wikipedia.org/wiki/Percent-encoding
https://support.localytics.com/Integration_Overview
http://www.periscopix.co.uk/blog/should-you-be-worried-about-sampling

Time-related topics
There is a lag from when an app sends an analytics event
to when the information is processed and made available to
you. The lag, or latency, varies from near 'real-time' to many
hours. You, and your business sponsors, need to decide how
long you can afford to lag real-time events. Also, remember
to address globalization issues such as the timestamp of each
element. Does the app detect the time of an event according
to the device's location, the device's settings or does it use a
global time like UTC time? Some providers, including Google,
have cut-offs for when data arrives in order for the data to
be reported on. We may have limited influence on when an
app transmits the data, so the 'problem' is hard to fix and it is
therefore important to remain aware that reports may lack data
from some users for various reasons.

Mobile Analytics269

What can go wrong?

The road to hell is paved with good intentions, there are many
things that can go wrong when implementing analytics in
mobile apps. Some of the most critical include:

 — Uncalibrated results: blindly trusting the data can lead
to a maelstrom of problems. The result can be inaccurate
and misleading which causes knock-on problems when you
use these results to manage the business and your work.
A good practice is to test the analytics implementation
at the outset, starting with no users, then one, before
testing with more users. Look at latency, accuracy, and
reliability of the recorded data.

 — Betraying trust: Users implicitly trust apps to behave
nicely on their mobile devices. However, apps or the
SDKs may accidentally or deliberately break that trust,
for instance by tracking users, recording and then using
sensitive data etc. Try not to hide behind click-through
agreements which we knew few people read and even
fewer understand. Instead, make sure your app and any
analytics libraries you use behave nicely and "Do as you
would be done by and do not snoop."

 — Handing over the jewels: The analytics data is sufficient-
ly valuable that some companies provide mobile analytics
services free-of-charge. As a minimum, make sure that
you do have sufficient rights and access to the data that
is collected by the analytics software. This is especially
relevant when using third-party libraries and services.

Be aware, some mobile analytics solution providers may use
data reported by your app, and they may provide and sell it
to others. They may control the life of that data, which means

Mobile Analytics270

they could make it inaccessible to you. Conversely, they may
preserve and use it long after you have retired your app. If
there is personally identifiable information in the data, there
may be additional legal and privacy implications.

SafeDK are a recent startup who focus on the behavior
of SDKs, including mobile analytics. SDKs added to apps can
adversely affect the performance, security and reliability of
the app in addition to other problems and concerns. SafeDK's
blog14 discuss the concerns and provide advice on how to
select SDKs by understanding the behaviors they exhibit.

Remember to explain to the end-users that the app is
designed to record and share information about how the app is
being used, ideally in your terms and conditions. You may need
or want to enable users to decide if they want their use of the
app to be tracked. If so, make it easy for the user to control
the settings; and consider providing the user a way to access
the recorded data, delete it, or contact the analytics solution
provider.

Providers of third-party libraries seem to have a range
of attitudes to privacy. Some claim the privacy of users is
paramount and stresses the importance of not tracking users.
Google Analytics clearly prohibit tracking personally identifi-
able information in their terms of service15. Others provide
examples, including snippets of source code, that demonstrates
how to record clearly personally identifiable data. For
instance, KISSmetrics provides the following code snippet16:
[identify:@"name@email.com"]. Mixpanel provides an
example of how to track specific users17.

14 blog.safedk.com

15 google.com/analytics/terms/us.html

16 support.kissmetrics.com/article/show/24034-objectivec-ios-library

17 mixpanel.com/activity-feed/

Mobile Analytics271

http://blog.safedk.com/
http://www.google.com/analytics/terms/us.html
http://support.kissmetrics.com/article/show/24034-objectivec-ios-library
https://mixpanel.com/activity-feed/

There are several places to learn more about privacy and
ethics of working with data related to users, e.g.:

 — Jeff Northrop's blog post on mobile analytics18

 — Kord Davis' book "Ethics of Big Data" (O'Reilly, 2012)19

Learn More

We hope this chapter has whetted your appetite to learn more
about mobile analytics. Here are some places to start your
ongoing research:

 — Various articles by Michael Wu or Lithium Technologies.
A good place to start is the article "Are Your Big Data
Analytics Actionable?"20

 — Capturing Mobile Experience in the Wild: A Tale of Two
Apps21, a study from the University of Wisconsin highlight-
ing the importance of application-centric analytics based
data collected on 1M+ users over 3 years.

 — The Beginner's Guide To App Analytics22, available as a free
download.

 — The Mobile Analytics Playbook23 includes material on using
mobile analytics to help improve testing of mobile apps.

18 jnorthrop.me/privacy-considerations-with-mixpanel-people-analytics

19 available at shop.oreilly.com/product/0636920021872.do

20 community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-
Analytics-Actionable/ba-p/129029

21 static.googleusercontent.com/media/research.google.com/en//pubs/
archive/41590.pdf

22 info.localytics.com/download-beginners-guide-to-app-analytics

23 themobileanalyticsplaybook.com

Mobile Analytics272

http://jnorthrop.me/privacy-considerations-with-mixpanel-people-analytics
http://shop.oreilly.com/product/0636920021872.do
http://community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-Analytics-Actionable/ba-p/129029
http://community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-Analytics-Actionable/ba-p/129029
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://info.localytics.com/download-beginners-guide-to-app-analytics
http://www.themobileanalyticsplaybook.com/

Collecting & Understanding
User Feedback
Feedback from our users can help us develop apps users want
to use and improve the apps we have. Users also pay attention
to the feedback of their peers, particularly how well apps are
rated in the app store. When we learn how to leverage their
feedback and when we respond to their feedback we show users
we care and we increase the chances of retaining these users
and encouraging more users. We may also reap the rewards
in terms of achieving business objectives such as increasing
revenues.

App stores have established themselves as the default place
where users write and share their feedback so it is important
to learn how to make sense of the feedback. App stores include
tools for doing so; there are many additional services and tools
available which are worth considering as part of our working
practices. In-app feedback can increase the quality and quan-
tity of feedback we receive, as well as enable us to respond
to gripes and issues directly. By responding directly we can
reduce negative feedback in the app store which may adversely
affect downloads, usage, and the perceptions of other current
and potential users. As volumes of feedback increase it is vital
to find ways of managing the volumes and remaining alert
and responsive, particularly as user feedback may be an early
indicator of problems with an app.

User feedback can be complemented with usability test-
ing and with techniques such as mobile analytics to provide
additional insights. Usability testing can be performed by
current users and by professional testers and researchers. Do
read the chapters about app concepts and about UI/UX design

B
Y

 J

ul
ia

n
H

ar
ty

Collecting & Understanding User Feedback274

in this book to learn more about usability testing. Mobile
analytics provides automated software-oriented feedback, see
the dedicated article in this guide to learn more about your
options in that area. This chapter focuses on technologies that
help you gathering and understanding human feedback.

Feedback Mechanisms

Lots of options are available to obtain feedback in addition to
the services app stores provide. We will cover the main ones
next.

App Store Ratings and Feedback
App stores provide a public forum for users to rate apps and
provide written comments. As many of us know, apps with
low ratings are much less likely to be downloaded by users.
Furthermore, app stores seem to use the app rating as a factor
for deciding the priority of including an app in search results
and even promoting some of the more popular apps.

Microcosms have matured around app stores, particularly to
help development teams process and interpret user feedback.
Estimates vary on the percentage of users who provide reviews,
some apps do not receive any, many are in the range of 0.1%
to 1%, and a few popular apps receive ratings and reviews
from up to 10% of their userbase. Some of the reviews may
be fake, which means that they do not come from actual users
of the app - instead they may be rogue or paid-for. Beware of
being tempted into providing reviews or sponsoring reviews for
your apps or those of your competitors - app stores have harsh
penalties, for instance Apple have removed apps and closed the

Collecting & Understanding User Feedback275

developer's account when they believe the developer gamed
the feedback and ratings1.

Initially, we might consider the priority of the star rat-
ings on a linear scale, where 1-star is the lowest and 'worst'
rating. However, work by Shopify and others discovered that
users gave 2-star ratings for the most serious and important
problems. They published their findings in a paper called What
Do Mobile App Users Complain About?2.

In-app Feedback
There are numerous ways of building in feedback channels
into your app. The most basic one is of course offering e-mail
feedback e.g. from your imprint screen, but you should not
expect a lot if this is the only channel you are offering.

Instead, you should consider asking users pro-actively to
share their perceptions with you. You can choose to cre-
ate your own in-app feedback mechanisms or use existing
offerings. Vendors like Apptentive claim they offer numerous
benefits including increasing the quantity of feedback as well
as user-satisfaction3. Feedback can range from basic, such
as multi-choice questions and answers, to rich and complex
where the user decides what feedback to provide and how.
Some marketing products, such as insert.io provide support for
questions and answers.

1 appleinsider.com/articles/17/05/24/dash-returns-to-app-store-seven-
months-after-review-system-manipulation-accusations

2 doi.ieeecomputersociety.org/10.1109/MS.2014.50

3 apptentive.com/why-apptentive/

Collecting & Understanding User Feedback276

https://www.insert.io/
http://appleinsider.com/articles/17/05/24/dash-returns-to-app-store-seven-months-after-review-system-manipulation-accusations
http://appleinsider.com/articles/17/05/24/dash-returns-to-app-store-seven-months-after-review-system-manipulation-accusations
http://doi.ieeecomputersociety.org/10.1109/MS.2014.50
https://www.apptentive.com/why-apptentive/

Comprehensive user surveys can also be built into your
app by using third-party integrations. Their branding may be
presented, alternatively there may be ways to configure their
user interface to use your branding and to blend their UI with
those of the app, for instance SurveyMonkey offers customiza-
tion of the UI4 and offer tips on ways to integrate surveys5.

A good place to start learning about in-app surveys is
quora.com/What-is-the-best-in-app-survey-SDK.

Social Media
Social media includes services such as Facebook and Twitter,
and more recently social video sites such as YouTube, where
people share their thoughts, impressions and feelings online
with various social groups such as friends, colleagues and
acquaintances. They may share things publicly, where anyone
can view the shared materials. Some feedback relates to mobile
apps. A good example is Facebook's own iOS app which drained
the battery of mobile apps. One of the Facebook engineering
managers, Ari Grant, explains the causes and the fixes in an
online article6. Interestingly, some of the subsequent com-
ments indicate the problem may have returned several releases
later.

You may want to consider some kind of social media
monitoring even if you do not have active channels for your
app on social media. Monitoring can notify you, particularly
when people are complaining about your app or service, and
enable you to respond promptly and professionally.

4 surveymonkey.co.uk/mp/mobile-sdk/

5 surveymonkey.com/blog/2016/03/03/7-tips-for-in-app-surveys-and-
collecting-responses-with-the-mobile-sdk/

6 facebook.com/arig/posts/10105815276466163

Collecting & Understanding User Feedback277

https://www.quora.com/What-is-the-best-in-app-survey-SDK
https://www.surveymonkey.co.uk/mp/mobile-sdk/
https://www.surveymonkey.com/blog/2016/03/03/7-tips-for-in-app-surveys-and-collecting-responses-with-the-mobile-sdk/
https://www.surveymonkey.com/blog/2016/03/03/7-tips-for-in-app-surveys-and-collecting-responses-with-the-mobile-sdk/
https://www.facebook.com/arig/posts/10105815276466163

Working with Feedback

In his book "The Art of the App Store"7, Tyson McCann defines
the following main steps when dealing with user feedback:

 — Categorize feedback, for instance, to identify constructive
criticism. Vague comments can be filtered out at this stage
too.

 — Convert feedback into actionable tasks, including sug-
gested fixes and assigning priorities.

 — Update the app with various fixes and improvements.
 — Add release notes so users can easily read the good news

about the improvements and install the updates promptly.

If you have a developer's account you can access and
respond to reviews for your apps directly. For Android apps on
the Google Play Store, Google provides downloads of various
data, including ratings and reviews. They also offer API access
(and free mobile apps).

Various commercial services offer to reduce the effort of col-
lecting and analyzing app store data, for instance by providing
API access. They may offer the ability to download and analyze
reviews for other apps, for instance if you would like to moni-
tor reviews for similar apps. They have various strengths such
as sentiment analysis, for example AppBot.co and workflow
integration, for example Appfollow.io offers integration with
Slack. You can also roll-your-own analysis if you are willing to
write software and maintain it as the data sources change.

7 Tyson McCann: The Art of the App Store: the Business of Apple Development,
ISBN 978-0-470-95278-8

Collecting & Understanding User Feedback278

https://appbot.co/
https://appfollow.io/

Data Mining
We may need to deal with lots of text on an ongoing basis, for
instance, some popular apps receive many 1,000's of pieces
of feedback each day, which is expensive to process without
software. Data mining can help process vast amounts of data,
and help us to identify trends, and discover fresh insights from
the feedback we receive. Data mining is a rich research topic,
and there is even a dedicated academic research project called
UCLappA8.

There is also a friendly free introduction to data mining
written for programmers online9.

Dealing with Inconsistencies
In some instances, the user rating and the remarks may contra-
dict each other. People may not understand the scoring system,
while app stores consider 5 stars the highest rating, users may
assume 1 star is the highest rating instead. Alternatively, the
ratings may seem to be almost random.

Thankfully, the major app stores now offer the possibility
to respond to reviews. You can use this mechanism and ask
users to correct their rating in case you think it is based on a
misunderstanding.

Rogue Feedback
Rogue feedback is feedback deliberately submitted to affect
the overall rating of an app. The feedback may be aimed at
inflating or deflating the rating. Some people try to inflate
the ratings for various reasons, for instance, to try and get
their app promoted by others. Others may target the apps of

8 www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

9 guidetodatamining.com

279 Collecting & Understanding User Feedback

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html
http://guidetodatamining.com/

competitors to drag down the ratings and adversely affect their
attractiveness, reduce the number of downloads, etc.

Like SPAM email, some rogue feedback may be easy to
detect and either report or filter out from our analysis, for
instance if there are lots of identical reviews with the same
text, etc. Others may be very poorly written. Some app stores
are working hard to reduce rogue feedback. Analogously
Amazon has removed lots of fake feedback and is suing various
people who wrote the feedback10.

10 http://www.wired.co.uk/news/archive/2015-10/19/amazon-
fake-reviews-legal-action-fiverr

Collecting & Understanding User Feedback280

http://www.wired.co.uk/news/archive/2015-10/19/amazon-fake-reviews-legal-action-fiverr
http://www.wired.co.uk/news/archive/2015-10/19/amazon-fake-reviews-legal-action-fiverr

Interpreting and Inferring

As we know from personal experience, the words people write
are not necessarily what they mean or exactly what they want
to express. They may not spell everything correctly and the
grammar may be poor. Also, there are nuances in interpret-
ing writing. For instance, in texting using a period to end a
sentence may be considered insincere11.

Feedback can be in various languages. App stores may use
automatic translation to help us read and interpret, none-the-
less our understanding will be incomplete and imperfect. Find-
ing native language speakers can help us work more effectively
with the users who provide feedback in languages foreign to
us. Emotional and sentiment analytics extend feedback in
several dimensions, we cover them shortly.

Emotional Analytics
Emotions can be highly relevant for some apps, and the
emotions of users can affect their perceptions of an app and
any feedback they provide. Apps are available that claim to
measure a user's emotions using visual12 and auditory13 sources
of data. They are early indicators of what might be not only
possible but useful, in the near future.

Sentiment Analytics
Sentiment analytics processes what users communicate to
determine their feelings, their sentiments, and their wish to
communicate to others. Those may be us, our organization,

11 lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-
in-1747411231

12 affectiva.com/solutions/mobile

13 beyondverbal.com

Collecting & Understanding User Feedback281

http://lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-in-1747411231
http://lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-in-1747411231
http://www.affectiva.com/solutions/mobile/
http://www.beyondverbal.com/

their friends or anyone who discovers what the users have
communicated. By paying attention to user's sentiments we
learn what they like and dislike so we can do more of what
they like and address what they do not.

Designing for Feedback about the Mobile
App

There are several key aspects to designing feedback. Here we
cover what to ask, when to ask and how to ask.

What to ask
Designing trustworthy responses involves more than asking
Yes/No questions. Yes does not always mean yes to the ques-
tion, and No does not always mean no. They may simply be "Go
Away!", that is, stop asking me questions! Insert's company
blog14 gives a nice example: When you ask something like
"Are you familiar with the new 'Touch to Pay' button?" a user
probably expects many follow-up questions asking for further
clarification if he answers No. So he might answer with Yes just
to get rid of the questioning.

When to ask
Asking for feedback e.g. via a pop-up is a simple way to get
started. However, when designing feedback try not to obstruct
or frustrate users, for instance, do not block them midway
through a process, a game level, etc. - at least do not if you
have any hope of getting positive feedback.

Savvy app developers design their apps and their systems
to encourage public feedback when people are more likely to
provide positive feedback and direct feedback if the feedback

14 insert.io/in-app-surveys/

Collecting & Understanding User Feedback282

http://www.insert.io/in-app-surveys/

is likely to be negative or critical. Users may be in a good
mood after successfully completing an action, for instance,
a level in a game, or a purchase on an e-commerce site. A
discreet request for feedback on completion may be well
received by some users, and others can simply continue with
whatever else they want to do. Some designers may include
prepared feedback statements in the hope of encouraging users
to use them.

How to ask
When implementing a feedback mechanism into your app, it
may be wise to ask users how they feel *before* asking them
to share their views in the app store. You may want to route
negative feedback away from the app store, where it would
be public and adversely affect the app's rating on the store. A
dialogue offering the following options would be one way of
achieving this:

1. You like this app? Please add a review now! (leads the
user to provide feedback on the app store)

2. Write a review later (closes the dialog)
3. and here is the detour: You do not like this app? Please

let us know why! (does NOT open the app store dialog,
instead open the email client, or in-app feedback, so that
feedback goes to you directly and is not public)

In other words "Please tell us first; and then once you're
happy - tell others (on public fora)."

Apple have revised their policy on rating reviews and placed
strict requirements on developers15.

15 see 9to5mac.com/2017/06/09/app-rating-custom-prompts-app-store-
banned

Collecting & Understanding User Feedback283

https://9to5mac.com/2017/06/09/app-rating-custom-prompts-app-store-banned/
https://9to5mac.com/2017/06/09/app-rating-custom-prompts-app-store-banned/

Responding to Feedback

For many organizations being able to respond accurately and
rapidly enables them to improve not only the user's perceptions
but also the perceptions of many more people either directly or
indirectly (for instance through the user telling others about
the good things we have done).

Most app stores offer the opportunity to respond to reviews
for their apps. None-the-less, according to Appbot16 on
Google Play 97% of reviews go unanswered. Perhaps you can
out compete many of your competitors by answering all your
reviews? In 2017 Apple added this option as well and provide
useful advice on how to do so17. By responding (especially for
bad reviews), app providers can help their users and increase
engagement. If you help users solve an issue they encountered,
they can (and hopefully will) revert their poor rating and give
your app more stars than in their initial review. But be careful:
Do not respond with general templates, otherwise you may give
users the impression that you are not treating their review with
sufficient respect (e.g. “Thanks for your feedback, we will look
into this.”). Instead, let the user know they are special and
their feedback is valuable by incorporate details they provided
(including their name if it is available).

Some project teams may decide to incorporate commercial
feedback services, such as HelpShift18 or UserVoice19, to help
them proactively manage feedback by users of their app.

16 blog.appbot.co/97-of-google-play-app-reviews-go-unanswered/

17 developer.apple.com/app-store/responding-to-reviews

18 helpshift.com

19 uservoice.com

Collecting & Understanding User Feedback284

https://blog.appbot.co/97-of-google-play-app-reviews-go-unanswered/
https://developer.apple.com/app-store/responding-to-reviews/
https://www.helpshift.com/
https://www.uservoice.com/

Learn more

 — A PDF explaining methods of how to automatically analyze
tens of millions user ratings and comments in mobile app
markets: "Why People Hate Your App - Making Sense of
User Feedback in a Mobile App Store", available at
cs.cmu.edu/~leili/pubs/fu-kdd2013-wiscom.pdf

 — An excellent read on that includes material on app store
reviews and ratings is the "App Quality Book" by Jason
Arbon20.

 — A high-level overview on 5 methods of collecting user
feedback on GetApps blog: lab.getapp.com/collect-
customer-feedback-customer-centric-company

 — A list of the 20 most popular survey offerings
(not mobile-centric) can be found at:
capterra.com/survey-software/#infographic

20 appqualitybook.com

http://www.cs.cmu.edu/~leili/pubs/fu-kdd2013-wiscom.pdf
https://lab.getapp.com/collect-customer-feedback-customer-centric-company/
https://lab.getapp.com/collect-customer-feedback-customer-centric-company/
http://www.capterra.com/survey-software/#infographic
http://appqualitybook.com

Monetization
Finally, you have finished your app or mobile website and
polished it as a result of beta testing feedback. Assuming
you are not developing as a hobby, for branding exposure, et
cetera, now it is time to make some money. But how do you do
that, what are your options?

In general, you have the following monetization options:

 — Pay per download: Sell your app per download
 — In-app payment: Add payment options into your app
 — Mobile advertising: Earn money from advertising
 — Sponsorships: Receive money for each user signing up to

your sponsor
 — Revenue sharing: Earn revenue from operator services

originating in your app
 — Indirect sales: Affiliates, data reporting and physical

goods among others
 — Component marketplace: Sell components or a white-

label version of your app to other developers
 — App platform subscriptions: Create small apps and lease

them to businesses

When you come to planning your own development,
determining the monetization business model should be one
of the key elements of your early design as it might affect the
functional and technical behavior of the app. "Five strategies
to monetize your mobile app"1 is an excellent article on how to
design the financial aspects so they do not annoy users or lose
the revenues you hoped to receive.

1 medium.com/@signored/dont-fall-below-the-app-poverty-line-
9b800a214e4a

B
Y

 M

ic
he

l S
hu

qa
ir

Monetization288

https://medium.com/@signored/dont-fall-below-the-app-poverty-line-9b800a214e4a
https://medium.com/@signored/dont-fall-below-the-app-poverty-line-9b800a214e4a

Pay Per Download

Using pay per download (PPD) your app is sold once to each
user as they download and install it on their phone. Payment
can be handled by an app store, mobile operator, or you can
set up a mechanism yourself. Once the most popular and profit-
able monetization method, today it is only used by 5% of all
mobile users, yet generating about 37.8% of all direct revenue
(PPD, mobile ads or in-app purchase) according to Invesp2

When your app is distributed in an app store, the store will
handle the payment mechanism for you. In return the store
takes a revenue share (typically 30%) on all sales. In most
cases stores offer a matrix of fixed price points by country
and currency ($0.99, EUR 0.79, $3 etc) to choose from when
pricing your app.

Payment for downloaded apps is generally handled in one of
two ways: operator billing or credit-card payments.

Operator billing enables your customers to pay for your app
by just confirming that the sale will be charged to their mobile
phone bill or by sending a Premium SMS. In some cases, opera-
tor billing is handled by an app store (such as Google Play,
which supports operator billing for a number of carriers around
the world). In other cases, it can be implemented directly by
the developer.

Each operator will take a revenue share of the sale price
(typically 30% to 65%, but some operators can take up to
95%), and, if you use one, an aggregator will take its share
too. Security (how you prevent the copying of your app) and
manageability are common issues with the PPD model, but
in some scenarios it might be the only monetization option.
Operator billing can be quite difficult to handle on your own,

2 invespcro.com/blog/in-app-purchase-revenue

Monetization289

https://www.invespcro.com/blog/in-app-purchase-revenue/

particularly if you want to sell in several countries, as you
need to sign contracts with each operator in each country.
For unknown reasons some operators, like Vodafone, seem to
remove operator billing as an option for Android Play in some
key markets, like UK and Germany and only just recently (2016)
reintroduced those options. Possibly because better alterna-
tives, like local mobile bank payments become available.

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements. The principal reason they
are doing this is that typically, when users have a choice of
credit card and operator billing methods users show a signifi-
cant preference for operator billing.

Credit-card billing is used by Apple, Google (in some cases),
Amazon and other stores. Apple has required iPhone users to
provide credit-card data at registration for many years, and
Google now requires this as well for Android users. Having this
information entered before purchase is, according to analysts,
a key differentiator for higher monthly per app revenue.

The last payment option is to create your own website and
implement a payment mechanism through that, such as PayPal
mobile, SEPA payments or others.

Using PPD can typically be implemented with no special
design or coding requirements for your app and for starters
we would recommend using the app store billing options as
it involves minimal setup costs and minor administrative
overhead.

For each form of payment it is important to determine price
elasticity of demand3. Increasing the price does not necessarily
mean higher total revenue (and vice versa), your price needs to
match expectations of your user base.

3 en.wikipedia.org/wiki/Price_elasticity_of_demand

Monetization290 Monetization

http://en.wikipedia.org/wiki/Price_elasticity_of_demand

In-App Purchase

In-app purchase (IAP) is a way to charge for specific actions
or assets within your application. A very basic use might be
to enable the one-off purchase of your application after a trial
period — which may garner more sales than PPD if you feel
the features of your application justify a higher price point.
Alternatively, you can offer the basic features of your applica-
tion for free, but charge for premium content (videos, virtual
credits, premium information, additional features, removing
ads and alike). Most app stores offer an in-app purchase option
or you can implement your own payment mechanism. If you
want to look at anything more than a one-off “full licence”
payment you have to think carefully about how, when and
what your users will be willing to pay for and design your app
accordingly.

Recurring in-app payments, also known as subscriptions, are
offered by most platforms as well. These type of payments fit
well when your app offers content that is regularly updated,
such as online newspapers or digital magazines. Recently the
revenue split between appstores and developers increased
depending on the commitment of your users. e.g. the longer
your users stay involved and purchase in-app, the higher the
percentage of your developer cut (ranging from 70% to 85%).

In-app purchases have become the leading monetization
model in many markets, particularly among that use free
distribution to get users hooked and obtain a larger user base
before turning them into buyers (for features such as buying
extra power, extra levels, virtual credits and alike).

Appboy expects in-app purchases to generate for 48% of all
direct revenue by the end of 20174.

4 www.appboy.com/blog/in-app-purchase-stats/

Monetization291

https://www.appboy.com/blog/in-app-purchase-stats/

If you target specific countries, be aware of different
behavior, e.g. in China the initial purchase is 99% of all
revenue generated, while IAP is very low, while in the US it is
the other way around.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment
method. If your application is implemented across various
platforms, you may need to implement a different mechanism
for each platform (in addition to each app store, potentially).

As with PPD we would recommend that you start with
the in-app purchasing mechanism offered by an app store,
particularly as some of these can leverage operator billing
services (such as Google Play) or utilize pre-existing credit-
card information (such as Apple or Amazon), or with in-app
payment offered directly by operators. From a user’s perspec-
tive, this is the easiest and most convenient way to pay (one
or two clicks, no need to enter credit card numbers, user names
or other credentials), so developers can expect the highest user
acceptance and conversion rates.

292

Mobile Advertising

As is common on websites, you could decide to earn money by
displaying advertisements. According to VisionMobile's survey
among 21,000 developers5, 38% of mobile app developers are
still reliant on this revenue model- although it seems proven
that it is proving profitable for only a small minority: 83%
of the study's participants who rely on ads, make less than
$10,000 a month.

There are a number of players who offer tools to display
mobile ads and it is the easiest way to make money on mobile
browser applications. AdMob6, MobAds7 and InMobi (for
games)8 are a few of the parties that offer mobile advertising.
However, because of the wide range of devices, countries
and capabilities there are currently over 70 large mobile ad
networks. Each network offers slightly different approaches
and finding the one that monetizes your app’s audience best
may not be straightforward. There is no golden rule; you may
have to experiment with a few to find the one that works best.
However, for a quick start you might consider using a mobile ad
aggregator, such as Madgic9, smaato10 or inneractive11 as they
tend to bring you better earnings by combining and optimizing
ads from 50+ mobile ad networks. Most aggregators can also
operate as an Ad Exchange, providing Real Time Bidding (RTB),

5 visionmobile.com/blog/2016/08/mobile-developers-advertising

6 google.com/admob

7 mobads.com

8 inmobi.com

9 madgic.com

10 smaato.net

11 inner-active.com

Monetization293

https://www.visionmobile.com/blog/2016/08/mobile-developers-advertising
http://www.google.com/admob
https://www.mobads.com
http://inmobi.com
http://www.madgic.com
http://www.smaato.net
http://www.inner-active.com

like a live auction where the price of each ad is determined at
run-time.

Most ad networks take a 30% to 50% share of advertising
revenue and aggregators another 15% to 20% on top of that,
but even with those numbers aggregators are still more profit-
able than trying to integrate all separate ad networks yourself.

If your app is doing really well and has a large volume in
a specific country you might consider selling ads directly to
advertising agencies or brands (Premium advertising) or hire a
media agency to do that for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mecha-
nisms are also worth exploring. In some cases you may have to
use the vendor’s offering to be able to include your application
in their store.

In-application advertising will require you to design and
code your application carefully. Not only the display location
of ads within your app needs to be considered with care, also
the variations and opt-out mechanism. If adverts become
too intrusive, users may abandon your app, while making the
advertising too subtle will mean you gain little or no revenue.
Relatively new compared to traditional banner advertising is
interstitial advertising: This term is generally used to describe
an ad that takes up the entire screen and typically has a
"skip screen" button at the bottom. Other new ad formats
include playable ads or rewarded ads, especially for games. It
may require some experimentation to find the right level and
positions in which to place adverts.

Monetization294

Sponsorships

The German startup Apponsor12 offers a new way of earning
money without the need to display advertising or charge a
download fee: The user gets your app for free and is prompted
to sign-up for a newsletter of your sponsor. The sponsor will
in return pay the developer an amount for each newsletter
registration. Not to be confused with App Sponsors, companies
who pay the development costs of your app in return for a
stake, like Apps Funder13.

Indirect Sales

Another option is to use your application to drive sales
elsewhere.

Here you usually offer your app or website for free and then
use mechanisms such as:

1. Affiliate app programs: Promote third party or your own
paid apps within a free app. CheetahMedialink.com is a
service provider that offers this type of monetization.

2. Data reporting: Track behavior and sell data to interested
parties. Note that for privacy reasons you should not reveal
any personal information, ensure all data is provided in
anonymous, consolidated reports.

3. Virtual vs. real world: Use your app as a marketing tool
to sell goods in the real world. Typical examples are car
apps, magazine apps and large brands such as McDonald’s
and Starbucks. Also, coupon applications as Groupon often
use this business model. Only 10% of the participants

12 apponsor.com

13 appsfunder.com

Monetization295

http://www.cheetahmedialink.com
http://apponsor.com
http://appsfunder.com

in the DevEconomics Report Q1 2017 are relying on this
business model, although mobile commerce developers are
more than three times as likely to make over 100K USD per
month than those monetizing with ads.14

4. In-app data collection: Use capture forms for third party
newsletters sign-ups or even present full surveys using
services like Pollfish15.

There is nothing to stop you from combining this option
with any of the other revenue generation options if you wish,
but take care that you do not give the impression of overly-
intrusive promotions.

Component Marketplace

A Component Marketplace (CMP) provides another opportunity
for developers to monetize their products to other developers
and earn money by selling software components or white-
labelled apps. A software component is a building block piece
of software, which provides a defined functionality, that is to
be used by higher level software.

The typical question that comes up at this point is on how
CMPs contrast to open source. As a user, open source is often
free-of-charge. Source code must be provided and users have
the right to modify the source code and distribute the derived
work.

Some component providers require a license fee. They
may provide full source code which enables the developer to
debug into lower level code. Some CMPs support all models:

14 vmob.me/DE1Q17

15 pollfish.com/publisher

Monetization296

http://vmob.me/DE1Q17
https://www.pollfish.com/publisher/

Paid components with or without source code as well as free
components with or without source code.

If you are a developer searching for a component, CMPs
offer two major advantages: First, you do not have to open
source your code just because you use software components.
All open source comes with a license. Some licenses like the
Apache are commercially friendly; others, such as AGPL and
OSL, require you to open source your code that integrates with
theirs. You might not want this. Secondly, CMPs provide an
easy way to find and download components. You can spend
days browsing open source repositories to find the right thing
to use.

Component marketplaces have existed for decades now. The
most prominent marketplace is for components for Visual Basic
and .NET in the Windows community. Marketplaces such as
componentOne and suppliers like Infragistics are well known in
their domain. The idea of component marketplaces within the
mobile arena is quite new. ChupaMobile16 is a relevant player
in this domain.

16 www.chupamobile.com

Monetization297

http://www.chupamobile.com

App Platform Subscriptions

The 2nd wave after the mobile consumer app adaption came
from the small and medium enterprises. According to Gartner17
the development capacity required to meet the demand of
enterprise apps will become critical in 2017.

Smaller businesses, including your bakery around the corner,
are interested to have their own app, but do not have the
budget to justify the development. For this target market the
App Platforms are an excellent choice. The developer designs
an app with some default options, adds the content and sells
a subscription to the company. All content is hosted online,
only the app framework is downloaded from the app stores. So
the company has to renew his subscription each month or year
to keep his app alive. Mastering the App Platform develop-
ment tools and selling a couple of new subscriptions a month
ensures a recurring revenue for the developer.

Choosing your Monetization Model

So with all these options what should your strategy be? It
depends on your goals, let us look at a few:

 — Are you convinced users will be willing to buy your app
immediately? Then sell it as PPD for $0.99, but beware
while you might cash several thousand dollars per day it
could easily be no more than a few hundred dollars per
week if your assessment of your app is misplaced or the
competition fierce. The Application Developer's Alliance
recommends the PPD monetization method mainly for
high-production apps, apps with barriers to entry and

17 www.gartner.com/newsroom/id/3076817

Monetization298

http://www.gartner.com/newsroom/id/3076817

high-volume apps18. This includes games and apps for
entertainment, productivity, navigation and news.

 — Do you target a large user base? Consider distributing your
application for free with in-app purchases, or with mobile
advertising (you could even offer a premium ad-free
version).

 — Are you offering premium features at a premium price?
Consider a time or feature limited trial application then
use in-app purchasing to enable the purchase of a full
version either permanently or for a period of time.

 — Are you developing a game? Consider offering the app for
free with in-app advertising or a basic version then use in-
app purchasing to allow user to unlock new features, more
levels, different vehicles or any extendable game asset19.

 — Is your mobile app an extension to your existing PC web
shop or physical store? Offer the app for free and earn
revenue from your products and services in the real world.

 — Does your app contain content that is updated frequently,
like digital magazines? Offer recurring in-app payments
and make sure that visitors return.

 — Do you offer physical goods, like a webshop app? Offer
your app for free and make money on the margins of your
customer's purchases.

18 www.appdevelopersalliance.org/app-monetization

19 Learn more about monetizing games in the respective section of the “Mobile
Games” chapter

Monetization

http://www.appdevelopersalliance.org/app-monetization/

User Acquisition

The flip side of revenue generation is marketing and promotion.
The need might be obvious if you sell your application through
your own website, but it is equally important when using a
vendor's app store. App stores are the curse and the blessing
of mobile developers. On the bright side they give develop-
ers extended reach and potential sales exposure that would
otherwise be very difficult to achieve. On the dark side the
more popular ones now contain millions of apps, decreasing
the potential to stand out from the crowd and be successful,
leading many to compare the chances of app store success to
the odds of winning the lottery.

So, here are a few tips and tricks to help you raise your
odds.

Strategies To Get High Rankings
The most important thing to understand about app stores
is that they are distribution channels and not marketing
machines. This means that while app stores are a great way to
get your app onto users’ devices, they are not going to market
your app for you (unless you purchase premium positioning
either through banners or list placings). You cannot rely on the
app stores to pump up your downloads, unless you happen to
get into a top-ten list. But do not play the lottery with your
apps, have a strategy and plan to market your app.

We have asked many developers about the tactics that
brought them the most attention and higher rankings in app
stores.

Many answers came back and one common theme emerged:
there is no silver bullet – you have to fire on all fronts!
However it will help if you try to keep the following in mind:

Monetization300

 — You need a kick ass app: it should be entertaining, easy to
use and not buggy. Make sure you put it in the hands of
users before you put it in a store.

 — Polish your icons and images in the app store, work on
your app description, and carefully choose your keywords
and category. If unsure of, or unsatisfied with the results,
experiment.

 — Getting reviewed by bloggers and magazines is one of the
best ways to get attention. In return some will be asking
for money, some for exclusivity, and some for early access.

 — Get (positive) reviews as quickly as possible. Call your
friends and ask your users regularly for a review.

 — If you are going to do any advertising, use a burst of
advertising over a couple of days. This is much more
effective than spending the same amount of money over
2 weeks, as it will help create a big spike, rather than a
slow, gradual push.

 — Do not rely on the traffic generated by people browsing
the app store, make sure you drive traffic to your app
through your website, SEO and social media.

 — Update your app often with appealing features. This
will notify your existing users that there is an update
available, bringing them back in action and engage with
your app more. Potential new users are more confident
with apps that are updated regularly than apps that have
not been updated for ages. Instead of publishing all your
features at once at launch, limit them to the most basic
ones and gradually update the app by adding a new item.

Monetization301

Multi-Store vs Single Store
With 120+ app stores available to developers, there are clearly
many application distribution options. But the 20 minutes
needed on average to submit an app to an app store means
you could be spending a lot of time posting apps in obscure
stores that achieve few downloads. This is why a majority
of developers stick to only 1 or 2 stores, missing out on a
potentially huge opportunity but getting a lot more time for
the important things, like coding! So should you go multi-store
or not?

Multi-store Single store

The main platform app stores
can have serious limitations,
such as payment mechanisms,
penetration in certain countries,
content guidelines.

90%+ of smartphone users only
use a single app store, which
tends to be the platform app
store shipping with the phone.

Smaller stores give you more
visibility options (featured app).

Your own website can bring you
more traffic than app stores
(especially if you have a well-
known brand).

Smaller stores are more social
media friendly than large ones.

Many smaller app stores scrape
data from large stores, so your
app may already be there.

Operators’ stores have notori-
ously strict content guidelines
and can be difficult to get in,
particularly for some types of
apps.

For non-niche content, operator
or platform stores may offer
enough exposure to not justify
the extra effort of a multi-store
strategy.

Monetization302

Multi-store Single store

Smaller stores may offer a wider
range of payment or business
model options, or be available in
many countries.

Some operators’ stores have
easier billing processes – such as
direct billing to a user’s mobile
account -- leading to higher
conversion rates.

Some developers report that 50%
of their Android revenues come
from outside of Android Market.

iOS developers only need 1 app
store.

The platform app stores should give you general coverage
for users, but over time, it is in your interest to adapt your app
store strategy to match your targeted user base, and utilize the
app stores that best reach it. This could mean using particular
operator stores, stores popular in a specific country, or simply
sticking with the platform stores. There are some third-party
app stores with large audiences, such as the Amazon app
store for Android, which offers developers a number of ways
to monetize their apps, such as PPD and in-app payments in
several countries. Additionally, in some countries, there are
locally popular app stores, such as AndroidPit20 in Germany, or
one of the many China-specific Android stores.

20 androidpit.de

Monetization303

http://www.androidpit.de/de/android-market

What Can You Earn?

One of the most common developer questions is about how
much money they can make with a mobile app. It is clear that
some apps have made their developer’s millionaires, while
others will not be giving up their day job anytime soon. Most
app developers are not generating enough revenue to break
even with development costs and single platform developers
confirmed it was not enough to support a standalone business.

According to VisionMobile, over 50% of them are below the
“app poverty line” of $500 per app per month21.

Mobile games seem to offer the most options to make
money according to Pulse22. And even if Android phones and
tablets are outnumbering iOS devices, China overtakes the U.S.
in iOS App Store revenue23.

Ultimately, what you can earn is about fulfilling a need and
effective marketing. Experience suggests that apps which save
the user money or time are most attractive (hotel discounts,
coupons, free music and alike) followed by games (just look at
the success of Angry Birds) and business tools (office document
viewers, sync tools, backup tools and alike) but often the
(revenue) success of a single app cannot be predicted. Success
usually comes with a degree of experimentation and a lot of
perseverance.

21 www.vmob.me/DE1Q17

22 www.linkedin.com/pulse/mobile-gaming-monetization-making-more-money-
your-app-jehan-damji

23 https://techcrunch.com/2016/10/20/china-overtakes-the-u-s-in-ios-app-
store-revenue techcrunch.com/2016/10/20/china-overtakes-the-u-s-in-ios-
app-store-revenue/

Monetization304

http://www.vmob.me/DE1Q17

Epilogue
Thanks for reading this 17th edition of our Mobile Developer’s
Guide. We hope you have enjoyed reading it and that we
helped you to clarify your options. Perhaps you are now ready
to get involved in developing a mobile app or have discovered
new options in the app business. We hope so. Please also get
involved in the community and share your experiences and
ideas with us and with others.

We said it before and we cannot say it often enough: If you
like to contribute to this guide as a writer or support upcoming
editions as a printing sponsor please write to . If you are using
Twitter, follow the project on twitter.com/mobiledevguide.

You can of course also get this guide as an ebook- just
check amazon.com. Or you simply download the pdf version on
our website: www.mobiledevelopersguide.com.

http://twitter.com/mobiledevguide
http://amazon.com
http://www.mobiledevelopersguide.com

About the Book
This project was initiated by Enough Software in 2009 with
the aim to spread knowledge about mobile technologies and
to encourage people to enter our community or deepen their
existing knowledge. With this edition, Open-Xchange (OX) took
over the project and will be driving it forward. Until today,
we have given away almost 100,000 hardcopies at events
worldwide. Universities and schools in Germany, Netherlands,
UK, Spain and South Africa use the book as teaching material.
The electronic versions (ebook and pdf) have been downloaded
hundreds of thousands of times and the content has been
translated into several languages. The book is a non-profit proj-
ect: the writers, editors, translators and designers contribute
their work free of charge. The printing and distribution costs
are usually covered by sponsors, this time by OX alone.

The Publisher

Open-Xchange
Open-Xchange (OX) leads the fight to keep the digital
landscape open, secure and transparent for all. Ruthlessly
committed to an open internet and software ecosystem, OX
opens opportunities for the world’s leading service providers
and telecommunications without compromising the privacy or
safety of users.

Since 2005, we have partnered with some of the larg-
est providers in the world to deliver email, messaging and
collaboration solutions that include secure storage, file and
document management, and best-in-class IMAP and DNS
management. Offering this full stack of open source technol-

About the Book308

ogy OX helps global IT businesses deliver innovative and high
quality customer experiences.

Our culture is founded on a commitment to openness, a
rebellious business spirit and the desire to leave the world
better than we found it. Effective teamwork is central to our
growth.

Learn more about the benefits of working with OX:
www.open-xchange.com
@openexchange

The Authors & Contributors

This project would not have been possible with the ongoing
support from the mobile community. These are the folks that
have been involved as authors this time. Some of them are on
board since 8 years already, others just recently joined. All are
awesome.

Aaron Ardiri / RIoT Secure AB
Aaron has been working with mobile
technologies since 1999 when Palm
OS was the biggest player in the
mobile market. He has extensive
experience in senior technical
management roles but put a lot of
his spare time towards mobile game
development, cross platform devel-
opment techniques, security, digital
rights management and his current
passion focuses on the Internet of Things in regard to security
and getting the most out of low powered micro-controllers. He

http://www.open-xchange.com
http://www.twitter.com/openexchange

is the CEO of RIoT Secure, focusing a developer awareness hub
and security solutions for the Internet of Things.

@riotsecure
www.riotsecure.se

Andrej Balaz / IXDS
Andrej currently works as a Senior
Service Designer at IXDS where
he helps established companies
and fresh founders alike to build
services that people will buy and
happily use. With his holistic
approach, over 7 years of experi-
ence and skills in research and
experience design for all the
individual bits and pieces that make
up a service, he bridges the gap between research and making.
Andrej values clear communication and pragmatic approaches
that combine iterative development with lean research. In his
free time he works as an illustrator. Andrej can be reached on
LinkedIn, Twitter or the Jobs to be Done meetup, which he
co-organizes.

@Designamyte
www.ixds.com

http://www.twitter.com/riotsecure
http://riotsecure.se
https://twitter.com/Designamyte
https://www.ixds.com

Daniel Böhrs / Open-Xchange
Daniel started developing software
in 2006 with PHP and web develop-
ment. During his computer science
studies he focused on Java and
especially Android development.
After obtaining his master degree
he joined Enough Software in
2015, which later got acquired by
Open Xchange. In the company he
is mainly an Android developer,
although he sometimes helps out in the server development
area.

@Boehrsi
boehrsi.de

Davoc Bradley / MiraLife
Davoc has been working as a soft-
ware engineer since 1999 special-
izing in architecture and design of
high usage web and mobile systems.
Currently he is CTO at MiraLife who
specialize in providing web based
and mobile software, which aims
to improve the lives of people
suffering from dementia and other
terminal illnesses. Davoc is also a
keen musician, avid cricket fan and loves traveling.

@davocbradley

https://twitter.com/Boehrsi
http://boehrsi.de
http://www.twitter.com/davocbradley

Sally Cain / RNIB
Sally has worked at RNIB in the area
of digital accessibility for more than
17 years. She believes passionately
in equal access to digital technol-
ogy for people with disabilities.
Sally is her organization's represen-
tative on W3C standards groups and
is also sits on a number of groups
at the British Standards Institute
(BSI) that relate to standards for
ICT. This includes the group responsible for BS8878 the Code
of Practice for Web Accessibility. Sally is currently the Acces-
sibility Technology Manager at RNIB with responsibility for
the accessibility of all internal and customer facing systems,
ensuring that RNIB is delivering on accessibility not only for
customers, but for staff too. She also led the writing of RNIB's
own internal app standard for accessibility. For this version
of the publication, Sally was assisted by Robin Spinks, RNIB's
Senior Strategy Manager, with information relating to the latest
features in iOS, Android and Windows 10.

@sallycain and @robinspinks
www.rnib.org.uk

http://twitter.com/sallycain
http://twitter.com/robinspinks
http://www.rnib.org.uk

Dean Churchill / AT&T
Dean works on secure design, devel-
opment and testing of applications
at AT&T. Over the past several years
he has focused on driving security
requirements in mobile applications,
for consumer applications as well as
internal AT&T mobile applications.
He has been busy supporting AT&T's
emerging Mobile Health and Digital
Life product lines. He lives in the
Seattle area and enjoys downhill skiing and fly fishing.

Neil Cook / Open-Xchange
Neil Cook has been working in
software development and security
since 1994, including developing
military messaging applications,
designing and deploying large-scale
internet messaging, and fighting
spam and abuse in internet services.
He has a PhD in Computer Science
from the University of Nottingham,
and is author of RFCs 5593 and
5616. Neil is currently responsible for software and service
security at Open-Xchange.

@neilthepeel
blog.open-xchange.com/author/neil

http://www.twitter.com/neilthepeel
https://blog.open-xchange.com/author/neil/

Oscar Clark / Unity Technologies
Oscar Clark is an author, consultant
and evangelist for Everyplay from
Unity Technologies. He has been
a pioneer in online, mobile and
console social games services since
1998. He provided 'vision' for one of
the first Online games communities
(Wireplay - British Telecom); was
global lead for games at Hutchison
Whampoa (3UK) which included
(perhaps) the first mobile in-App purchase; and was Home
Architect for PlayStation®Home.

He is a regular columnist on PocketGamer.Biz and Develop-
Online, an outspoken speaker at countless games conferences,
a mentor for accelerator GameFounders and has guest lectured
for several universities. His first book, "Games As A Service -
How Free To Play Design Can Make Better Games" is available
online.

@athanateus
www.gamesasaservice.net

http://www.twitter.com/athanateus
http://www.gamesasaservice.net

Julian Harty / Commercetest
Julian's mission is to help people
live better lives through mobile
technologies. He has worked glob-
ally in leadership and engineering
roles for Google, eBay, Salesforce,
Klarna, Badoo, and many others to
help improve engineering practices
and deliver better quality software
while also improving the fulfill-
ment and motivation for the people involved. He has been
actively involved in the modern mobile ecosystem since 2006
and this guide from 2010 onwards. Currently he is working
independently, writing mobile apps & suitable test automation
tools, and helping others to improve their mobile apps. He is
also trying to complete his PhD on improving development and
testing of mobile apps.

@julianharty
GitHub: github.com/julianharty

Alex Jonsson / Evothings Labs
Alex has been active in the internet
business for over 25 year, with a
partiality for connecting physical
stuff to mobile. He holds a Tech, Dr.
habil in Computer Science/Media
Technology from the Royal Institute
of Technology in Stockholm and
freely shares his ideas and thoughts
with both the industry and aca-
demia. Dr Jonsson also has an eclectic urge to investigate how
apps and services act as drivers for new business, by bringing

http://www.twitter.com/julianharty
https://github.com/julianharty

novel values and ways to make things more connected, thereby
binding the universe together in new, clever ways. Alex is
co-founder and chairperson of Evothings Labs in Stockholm,
Sweden.

@dr_alexj
www.evothings.com

Vikram Kriplaney
Vikram has been a mobile developer
since when WAP was still cool and
Symbian and J2ME were still
fashionable. He founded mobile at
local.ch in 2007, where he went on
to singlehandedly develop massively
successful mobile web, iOS and
Android apps. He is now Mobile
Architect and lead engineer for
local.ch and search.ch (Swisscom Directories), where he helped
build one of the most awesome mobile engineering teams in
Switzerland.

@krips
www.local.ch and www.iPhonso.com

Cornelius Kwietniak /
Open-Xchange
Cornelius specializes in graphic,
UI, UX and visual design for mobile
applications and other interactive
technologies. He was in charge
of the layout and design of the
previous guides. When not involved
with something mobile, he loves
to experiment with digital art and
illustration.

http://www.twitter.com/dr_alexj
http://www.evothings.com
https://twitter.com/krips
http://www.local.ch
http://iphonso.com

Ruadhán O'Donoghue / Western
Technological
Ruadhán is a web and mobile
developer based in Ireland. He has
worked in web development since
1999, and developed his first mobile
web application, a WAP dictionary,
back in 2000 when the mobile web
was built on WAP and WML, and was
browsed on tiny monochrome phone
screens. Since then, he has worked in many different roles
including Head of Engineering at Afilias/dotMobi. He has been
an Editor and contributor to mobile technology site mobiForge.
com for over 10 years, and publishes articles on mobile web
development regularly. He has just published his first book,
"AMP: Building Accelerated Mobile Pages". He currently runs
his own web consultancy, Western Technological.

@rodono
westerntechnological.com and ruadhan.com

Alex Repty
Alex is a freelance software
engineer, specialized in OS X, iOS,
watchOS and tvOS software. He has
been developing software for Apple
platforms ever since he got his first
Mac in 2004. Since then, he has
helped create a wide variety of ap-
plications, some of which were even
featured in Apple's "There's an app
for that" campaign or won an Apple

http://twitter.com/rodono
http://westerntechnological.com
http://ruadhan.com

Design Award. His passion for clean code, software engineering
trends and user experience design make him get up on stage
on various iOS-related conferences.

@arepty

Michel Shuqair / AppValley
Starting with black and white WAP
applications, iMode and SMS games
in the 1990's, Michel moved to lead
the mobile social network Wauwee.
Serving almost 1,000,000 members,
Michel was supported by a team of
Symbian, iPhone, BlackBerry and
Android specialists at headquarters
in Amsterdam. Wauwee was
acquired by MobiLuck, which is
now part of Paris based Madgic.com, a mobile monetization
platform.

www.appvalley.nl

Marco Tabor / Open-Xchange
Marco started working in the mobile
software business in 2005. Three
years later, he joined the dream
team at Enough Software where he
has been responsible for PR, sales,
project management and much
more. Since the team has become
a part of Open Xchange, Marco
fully concentrates on his role as a
product owner, mainly for mobile
apps. He is also the main coordinator of this book project.

@enoughmarco

http://www.twitter.com/arepty
http://www.appvalley.nl
http://www.twitter.com/enoughmarco

Ian Thain / SAP
Ian is a Mobile Evangelist at SAP,
though he started 13 years ago
with Sybase Inc. He regularly
addresses audiences all over the
world providing mobile knowledge
and experience for the Enterprise.
He also writes articles, blogs &
tweets on Enterprise Mobility and is
passionate about the Developer &
Mobile Experience in the Corporate/
Business world.

@ithain
www.sap.com and scn.sap.com/blogs/ithain/

Marc van 't Veer / Polteq
Marc is a mobile app test consultant
and trainer at Polteq and has
worked in different test roles for
over 12 years. He is helping com-
panies with mobile device analysis,
test strategy, implementing mobile
test automation and giving training
on mobile app testing in practice,
CMAP and API testing. Currently
Marc supports companies in improv-
ing the mobile app testing based on the TI4 Mobile approach.

@marc_vantveer
www.marcvantveer.niobe.nl and www.polteq.com

http://www.twitter.com/ithain
http://www.sap.com
http://scn.sap.com/blogs/ithain/
http://www.twitter.com/marc_vantveer
http://marcvantveer.niobe.nl/
http://www.polteq.com

Robert Virkus / Open-Xchange
Robert has been working in the
mobile space since 1998 starting
with the WAP mobile Internet
technology in the 1990's. As he
experienced device fragmentation
issues first-hand when developing
and porting a mobile app on the
Siemens SL42i, he started J2ME
Polish - an Open Source feature
development framework - in 2004.
After founding the corresponding company Enough Software
he joined OX in 2016 and now heads the app development
department of OX. He loves retro computers, Lego and his two
kids and adorable wife Olga.

@robert_virkus
Mastodon: mastodon.cloud/@enough

Mladenka Vrdoljak / Open-Xchange
Mladenka is completing an appren-
ticeship as a digital media designer
at Open-Xchange. That means she
is engaged with User Interface,
User Experience and graphic design
for mobile applications, as well as
coding. She is also responsible for
the layout, design and text editing
of this guide. In her spare time, she
likes to travel, draw and play video
games.

@_mladenka

http://www.twitter.com/robert_virkus
https://mastodon.cloud/@enough

t

DON’T JUST
GO TO WORK
THRIVE!

Open people for an open source!
People here are committed to openness,
a rebellious business spirit and the will to
revolutionize the market.

We are eMail
Worldwide companies like: 1&1, STRATO,
Host Europe, NetCologne, network
solutions/web.com and Rackspace use
our “white label” products for eMail and
collaboration.

Work with professionals around the
world!
Join the force which develops products
for everyday digital life without sacrificing
personal freedom.

Interested in becoming part of
something big? Find your new career at
open-xchange.com/jobs or contact
recruiting@open-xchange.com

	Prologue
	The Galaxy of Mobile: Past, Present and Future
	From Idea to Prototype
	Android
	iOS
	Going Cross-Platform
	Mobile Web
	Enterprise Apps
	Mobile Gaming
	The Internet of Things (IoT)
	Artificially Intelligent Apps
	Security & Privacy
	Accessibility
	Testing
	Mobile Analytics
	Collecting & Understanding User Feedback
	Monetization
	Epilogue
	About the Book

